ترغب بنشر مسار تعليمي؟ اضغط هنا

SGR J1550-5418 bursts detected with the Fermi Gamma-ray Burst Monitor during its most prolific activity

56   0   0.0 ( 0 )
 نشر من قبل Alexander J. van der Horst
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have performed detailed temporal and time-integrated spectral analysis of 286 bursts from SGR J1550-5418 detected with the Fermi Gamma-ray Burst Monitor (GBM) in January 2009, resulting in the largest uniform sample of temporal and spectral properties of SGR J1550-5418 bursts. We have used the combination of broadband and high time-resolution data provided with GBM to perform statistical studies for the source properties. We determine the durations, emission times, duty cycles and rise times for all bursts, and find that they are typical of SGR bursts. We explore various models in our spectral analysis, and conclude that the spectra of SGR J1550-5418 bursts in the 8-200 keV band are equally well described by optically thin thermal bremsstrahlung (OTTB), a power law with an exponential cutoff (Comptonized model), and two black-body functions (BB+BB). In the spectral fits with the Comptonized model we find a mean power-law index of -0.92, close to the OTTB index of -1. We show that there is an anti-correlation between the Comptonized Epeak and the burst fluence and average flux. For the BB+BB fits we find that the fluences and emission areas of the two blackbody functions are correlated. The low-temperature BB has an emission area comparable to the neutron star surface area, independent of the temperature, while the high-temperature blackbody has a much smaller area and shows an anti-correlation between emission area and temperature. We compare the properties of these bursts with bursts observed from other SGR sources during extreme activations, and discuss the implications of our results in the context of magnetar burst models.

قيم البحث

اقرأ أيضاً

SGR J1550-5418 (previously known as AXP 1E 1547.0-5408 or PSR J1550-5418) went into three active bursting episodes in 2008 October and in 2009 January and March, emitting hundreds of typical Soft Gamma Repeater (SGR) bursts in soft gamma-rays. The se cond episode was especially intense, and our untriggered burst search on Fermi/GBM data (8-1000 keV) revealed ~450 bursts emitted over 24 hours during the peak of this activity. Using the GBM data, we identified a ~150-s-long enhanced persistent emission during 2009 January 22 that exhibited intriguing timing and spectral properties: (i) clear pulsations up to ~110 keV at the spin period of the neutron star (P ~ 2.07 s, the fastest of all magnetars), (ii) an additional (to a power-law) blackbody component required for the enhanced emission spectra with kT ~ 17 keV, (iii) pulsed fraction that is strongly energy dependent and highest in the 50-74 keV energy band. A total isotropic-equivalent energy emitted during this enhanced emission is estimated to be 2.9 x 10^{40} (D/5 kpc)^2 erg. The estimated area of the blackbody emitting region of ~0.046(D/5 kpc)^2 km^2 (roughly a few x 10^{-5} of the neutron star area) is the smallest hot spot ever measured for a magnetar and most likely corresponds to the size of magnetically-confined plasma near the neutron star surface.
We report on time-resolved spectroscopy of the 63 brightest bursts of SGR J1550-5418, detected with Fermi/Gamma-ray Burst Monitor during its 2008-2009 intense bursting episode. We performed spectral analysis down to 4 ms time-scales, to characterize the spectral evolution of the bursts. Using a Comptonized model, we find that the peak energy, E_peak, anti-correlates with flux, while the low-energy photon index remains constant at -0.8 up to a flux limit F~10^-5 erg s-1 cm-2. Above this flux value the E_peak-flux correlation changes sign, and the index positively correlates with flux reaching 1 at the highest fluxes. Using a two black-body model, we find that the areas and fluxes of the two emitting regions correlate positively. Further, we study here for the first time, the evolution of the temperatures and areas as a function of flux. We find that the area-kT relation follows lines of constant luminosity at the lowest fluxes, R^2 propto kT^-4, with a break at higher fluxes ($F>10^-5.5 erg s-1 cm-2). The area of the high-kT component increases with flux while its temperature decreases, which we interpret as due to an adiabatic cooling process. The area of the low-kT component, on the other hand, appears to saturate at the highest fluxes, towards R_max~30 km. Assuming that crust quakes are responsible for SGR bursts and considering R_max as the maximum radius of the emitting photon-pair plasma fireball, we relate this saturation radius to a minimum excitation radius of the magnetosphere, and put a lower limit on the internal magnetic field of SGR J1550-5418, B_int>~4.5x10^15 G.
We study the time-resolved spectra of eight GRBs observed by Fermi GBM in its first five years of mission, with 1 keV - 1 MeV fluence $f>1.0times10^{-4}$ erg cm$^{-2}$ and signal-to-noise level $text{S/N}geq10.0$ above 900 keV. We aim to constrain in detail the spectral properties of GRB prompt emission on a time-resolved basis and to discuss the theoretical implications of the fitting results in the context of various prompt emission models. We perform time-resolved spectral analysis using a variable temporal binning technique according to optimal S/N criteria, resulting in a total of 299 time-resolved spectra. We fit the Band function to all spectra and obtain the distributions for the low-energy power-law index $alpha$, the high-energy power-law index $beta$, the peak energy in the observed $ u F_ u$ spectrum $E_text{p}$, and the difference between the low- and high-energy power-law indices $Delta s=alpha-beta$. Using the distributions of $Delta s$ and $beta$, the electron population index $p$ is found to be consistent with the moderately fast scenario which fast- and slow-cooling scenarios cannot be distinguished. We also apply a physically motivated synchrotron model, which is a triple power-law with constrained power-law indices and a blackbody component, to test for consistency with a synchrotron origin for the prompt emission and obtain the distributions for the two break energies $E_text{b,1}$ and $E_text{b,2}$, the middle segment power-law index $beta$, and the Planck function temperature $kT$. A synchrotron model is found consistent with the majority of time-resolved spectra for these eight energetic Fermi GBM bursts with good high-energy photon statistics, as long as both the cooling and injection break are included and the leftmost spectral slope is lifted either by inclusion of a thermal component or when an evolving magnetic field is accounted for.
The Fermi Gamma-ray Burst Monitor (GBM) has detected over 1400 Gamma-Ray Bursts (GRBs) since it began science operations in July, 2008. We use a subset of over 300 GRBs localized by instruments such as Swift, the Fermi Large Area Telescope, INTEGRAL, and MAXI, or through triangulations from the InterPlanetary Network (IPN), to analyze the accuracy of GBM GRB localizations. We find that the reported statistical uncertainties on GBM localizations, which can be as small as 1 degree, underestimate the distance of the GBM positions to the true GRB locations and we attribute this to systematic uncertainties. The distribution of systematic uncertainties is well represented (68% confidence level) by a 3.7 degree Gaussian with a non-Gaussian tail that contains about 10% of GBM-detected GRBs and extends to approximately 14 degrees. A more complex model suggests that there is a dependence of the systematic uncertainty on the position of the GRB in spacecraft coordinates, with GRBs in the quadrants on the Y-axis better localized than those on the X-axis.
The Gamma-Ray Burst Monitor (GBM) will significantly augment the science return from the Fermi Observatory in the study of Gamma-Ray Bursts (GRBs). The primary objective of GBM is to extend the energy range over which bursts are observed downward fro m the energy range of the Large Area Telescope (LAT) on Fermi into the hard X-ray range where extensive previous data exist. A secondary objective is to compute burst locations on-board to allow re-orientiong the spacecraft so that the LAT can observe delayed emission from bright bursts. GBM uses an array of twelve sodium iodide scintillators and two bismuth germanate scintillators to detect gamma rays from ~8 keV to ~40 MeV over the full unocculted sky. The on-board trigger threshold is ~0.7 photons/cm2/s (50-300 keV, 1 s peak). GBM generates on-board triggers for ~250 GRBs per year.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا