ﻻ يوجد ملخص باللغة العربية
A simple relationship between recently proposed measures of non-Markovianity and the Loschmidt echo is established, holding for a two-level system (qubit) undergoing pure dephasing due to a coupling with a many-body environment. We show that the Loschmidt echo is intimately related to the information flowing out from and occasionally back into the system. This, in turn, determines the non-Markovianity of the reduced dynamics. In particular, we consider a central qubit coupled to a quantum Ising ring in the transverse field. In this context, the information flux between system and environment is strongly affected by the environmental criticality; the qubit dynamics is shown to be Markovian exactly and only at the critical point. Therefore non-Markovianity is an indicator of criticality in the model considered here.
Environment--induced decoherence causes entropy increase. It can be quantified using, e.g., the purity $varsigma={rm Tr}rho^2$. When the Hamiltonian of a quantum system is perturbed, its sensitivity to such perturbation can be measured by the Loschmi
Loschmidt echo (LE) is a measure of reversibility and sensitivity to perturbations of quantum evolutions. For weak perturbations its decay rate is given by the width of the local density of states (LDOS). When the perturbation is strong enough, it ha
We study the decay rate of the Loschmidt echo or fidelity in a chaotic system under a time-dependent perturbation $V(q,t)$ with typical strength $hbar/tau_{V}$. The perturbation represents the action of an uncontrolled environment interacting with th
We consider the degradation of the dynamics of a Gaussian wave packet in a harmonic oscillator under the presence of an environment. This last is given by a single non-degenerate two level system. We analyze how the binary degree of freedom perturbs
We study the dynamics of an open quantum system interacting with a non-thermal bath. Here, non-thermal means that the bath modes do not need to have the same temperature, but they have an effective temperature distribution. We find that, when a quant