ترغب بنشر مسار تعليمي؟ اضغط هنا

Factorization of supersymmetric Hamiltonians in curvilinear coordinates

143   0   0.0 ( 0 )
 نشر من قبل M. A. Gonzalez Leon
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Planar supersymmetric quantum mechanical systems with separable spectral problem in curvilinear coordinates are analyzed in full generality. We explicitly construct the supersymmetric extension of the Euler/Pauli Hamiltonian describing the motion of a light particle in the field of two heavy fixed Coulombian centers. We shall also show how the SUSY Kepler/Coulomb problem arises in two different limits of this problem: either, the two centers collapse in one center - a problem separable in polar coordinates -, or, one of the two centers flies to infinity - to meet the Coulomb problem separable in parabolic coordinates.



قيم البحث

اقرأ أيضاً

168 - I.V. Tyutin , B.L. Voronov 2012
This paper is a natural continuation of the previous paper J.Phys. A: Math.Theor. 44 (2011) 425204, arXiv 0907.1736 [quant-ph] where oscillator representations for nonnegative Calogero Hamiltonians with coupling constant $alphageq-1/4$ were construct ed. Here, we present generalized oscillator representations for all Calogero Hamiltonians with $alphageq-1/4$.These representations are generally highly nonunique, but there exists an optimum representation for each Hamiltonian.
This paper is an addendum to earlier papers cite{R1,R2} in which it was shown that the unstable separatrix solutions for Painleve I and II are determined by $PT$-symmetric Hamiltonians. In this paper unstable separatrix solutions of the fourth Painle ve transcendent are studied numerically and analytically. For a fixed initial value, say $y(0)=1$, a discrete set of initial slopes $y(0)=b_n$ give rise to separatrix solutions. Similarly, for a fixed initial slope, say $y(0)=0$, a discrete set of initial values $y(0)=c_n$ give rise to separatrix solutions. For Painleve IV the large-$n$ asymptotic behavior of $b_n$ is $b_nsim B_{rm IV}n^{3/4}$ and that of $c_n$ is $c_nsim C_{rm IV} n^{1/2}$. The constants $B_{rm IV}$ and $C_{rm IV}$ are determined both numerically and analytically. The analytical values of these constants are found by reducing the nonlinear Painleve IV equation to the linear eigenvalue equation for the sextic $PT$-symmetric Hamiltonian $H=frac{1}{2} p^2+frac{1}{8} x^6$.
In this work, we review two methods used to approach singular Hamiltonians in (2+1) dimensions. Both methods are based on the self-adjoint extension approach. It is very common to find singular Hamiltonians in quantum mechanics, especially in quantum systems in the presence of topological defects, which are usually modelled by point interactions. In general, it is possible to apply some kind of regularization procedure, as the vanishing of the wave function at the location of the singularity, ensuring that the wave function is square-integrable and then can be associated with a physical state. However, a study based on the self-adjoint extension approach can lead to more general boundary conditions that still gives acceptable physical states. We exemplify the methods by exploring the bound and scattering scenarios of a spin 1/2 charged particle with an anomalous magnetic moment in the Aharonov-Bohm potential in the conical space.
In this paper we construct $mathcal{N}=2$ supersymmetric (SUSY) quantum mechanics over several configurations of Dirac-$delta$ potentials from one single delta to a Dirac comb rqrq. We show in detail how the building of supersymmetry on potentials w ith delta interactions placed in two or more points on the real line requires the inclusion of quasi-square wells. Therefore, the basic ingredient of a supersymmetric Hamiltonian containing two or more Dirac-$delta$s is the singular potential formed by a Dirac-$delta$ plus a step ($theta$) at the same point. In this $delta/theta$ SUSY Hamiltonian there is only one singlet ground state of zero energy annihilated by the two supercharges or a doublet of ground states paired by supersymmetry of positive energy depending on the relation between the Dirac well strength and the height of the step potential. We find a scenario of either unbroken supersymmetry with Witten index one or supersymmetry breaking when there is one bosonicrqrq and one fermionicrqrq ground state such that the Witten index is zero. We explain next the different structure of the scattering waves produced by three $delta/theta$ potentials with respect to the eigenfunctions arising in the non-SUSY case. In particular, many more bound states paired by supersymmetry exist within the supersymmetric framework compared with the non-SUSY problem. An infinite array of equally spaced $delta$-interactions of the same strength but alternatively attractive and repulsive are susceptible of being promoted to a ${cal N}=2$ supersymmetric system...
81 - Georg Junker 2019
The most general Dirac Hamiltonians in $(1+1)$ dimensions are revisited under the requirement to exhibit a supersymmetric structure. It is found that supersymmetry allows either for a scalar or a pseudo-scalar potential. Their spectral properties are shown to be represented by those of the associated non-relativistic Witten model. The general discussion is extended to include the corresponding relativistic and non-relativistic resolvents. As example the well-studied relativistic Dirac oscillator is considered and the associated resolved kernel is found in a closed form expression by utilising the energy-dependent Greens function of the non-relativistic harmonic oscillator. The supersymmetric quasi-classical approximation for the Witten model is extended to the associated relativistic model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا