ترغب بنشر مسار تعليمي؟ اضغط هنا

13C NMR study of superconductivity near charge instability realized in beta-(BEDT-TTF)4[(H3O)Ga(C2O4)3]C6H5NO2

35   0   0.0 ( 0 )
 نشر من قبل Yoshihiko Ihara
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

To investigate the superconducting (SC) state near a charge instability, we performed ^{13}C NMR experiments on the molecular superconductor beta-(BEDT-TTF)_{4}[(H_{3}O)Ga(C_{2}O_{4})_{3}]C_{6}H_{5}NO_{2}, which exhibits a charge anomaly at 100 K. The Knight shift which we measured in the SC state down to 1.5 K demonstrates that Cooper pairs are in spin-singlet state. Measurements of the nuclear spin-lattice relaxation time reveal strong electron-electron correlations in the normal state. The resistivity increase observed below 10 K indicates that the enhanced fluctuation has an electric origin. We discuss the possibility of charge-fluctuation-induced superconductivity.

قيم البحث

اقرأ أيضاً

The electron paramagnetic resonance study for an organic superconductor $beta$-(BEDT-TTF)$_{4}$[(H$_3$O)Ga(C$_2$O$_4$)$_3$]$cdot$C$_6$H$_5$NO$_2$ reveals that superconductivity coexists uniformly with the charge ordered state in one material. In the charge ordered state, the interplane spin exchange is gapped, while the in-plane conductivity is not significantly modified. This anisotropic behavior is explained by the exotic charge ordered state, in which molecular-site selective carrier localization coexists with conducting carriers on other molecules. Relationship between superconductivity and this conductive charge ordered state is investigated.
53 - A.V. Dolbin 2018
The temperature dependence of the linear thermal expansion coefficients (LTEC) of a single crystal of a-(BEDT-TTF)2NH4Hg(SCN)4 where BEDT-TTF is bis(ethylenedithio)tetrathiafulvalene was studied by the method of precision capacitive dilatometry in th e temperature range 2-250 K along the crystallographic direction b* (perpendicular to the crystal layers). Negative values of LTEC were found below 4 K. Probably it is due to charge fluctuations as the temperature approaches the temperature of transition to the superconducting state Tc. It has been suggested that the bends on temperature dependence of LTEC observed in the temperature range 25-45 K are related to order-disorder arrangement of NH4+ ions. Weak maximum of the LTEC, detected at a temperature of about 200-220 K, can be caused by the processes of charge redistribution and the associated intermolecular interaction fluctuations.
Static susceptibility of kappa-[(BEDT-TTF)1-x(BEDSe-TTF)x]2Cu[N(CN)2]Br alloys with the BEDSe-TTF content near the border-line of ambient pressure superconductivity (x~0.3) has been measured as a function of temperature, magnetic field, and pressure. A non-monotonic pressure dependence is observed for both the superconducting critical temperature and superconducting volume fraction, with both quantities showing growth under pressure in the initial pressure range P < 0.3 kbar. The results are discussed in comparison with the data on the related kappa-phase BEDT-TTF superconductors in which not a cation but anion sublattice is modified by alloying, namely the family kappa-(BEDT-TTF)2Cu[N(CN)2]Cl1-xBrx. PACS numbers: 74.62.Fj, 74.70.Kn.
In an ultrasonic experiment, we have investigated the temperature profile of the velocity of longitudinal elastic waves propagating along a direction perpendicular to the layers in the organic superconductors kappa-(BEDT-TTF)_2X, X = Cu(SCN)_2 and Cu [N(CN)_2]Br. Although a small decrease of the velocity is observed at the superconducting transition, the most anomalous behavior is obtained in the normal metallic state where an important softening is identified around 40-50 K. In order to characterize the origin of this anomaly, we have studied its behavior under the application of hydrostatic pressure. The observed behavior is found to mimic those of the transport and magnetic properties of these materials which have been attributed to the magnetic fluctuations. Following the example of one-dimensional insulating systems where coupling between longitudinal acoustic waves and magnetic fluctuations is known to occur, our results suggest that the pseudo-gap regime of these two-dimensional organic superconductors is dominated by a similar mechanism.
302 - T.Sasaki , H. Oizumi , Y. Honda 2010
The suppression of superconductivity by nonmagnetic disorder is investigated systematically in the organic superconductor $kappa$-(BEDT-TTF)$_2$Cu(NCS)$_2$. We introduce a nonmagnetic disorder arising from molecule substitution in part with deuterate d BEDT-TTF or BMDT-TTF for BEDT-TTF molecules and molecular defects introduced by X-ray irradiation. A quantitative evaluation of the scattering time $tau_{rm dHvA}$ is carried out by de Haas-van Alphen (dHvA) effect measurement. A large reduction in $T_{rm c}$ with a linear dependence on $1/tau_{rm dHvA}$ is found in the small-disorder region below $1/tau_{rm dHvA} simeq$ 1 $times$ 10$^{12}$ s$^{-1}$ in both the BMDT-TTF molecule-substituted and X-ray-irradiated samples. The observed linear relation between $T_{rm c}$ and $1/tau_{rm dHvA}$ is in agreement with the Abrikosov-Gorkov (AG) formula, at least in the small-disorder region. This observation is reasonably consistent with the unconventional superconductivity proposed thus far for the present organic superconductor. A deviation from the AG formula, however, is observed in the large-disorder region above $1/tau_{rm dHvA} simeq$ 1 $times$ 10$^{12}$ s$^{-1}$, which reproduces the previous transport study (J. G. Analytis {it et al.}: Phys. Rev. Lett. {bf 96} (2006) 177002). We present some interpretations of this deviation from the viewpoints of superconductivity and the inherent difficulties in the evaluation of scattering time.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا