ﻻ يوجد ملخص باللغة العربية
Motivated by recent observations that show increasing fractional linear polarization with increasing wavelength in a small number of optically thin jet features, i.e. inverse depolarization, we present a physical model that can explain this effect and may provide a new and complementary probe of the low energy particle population and possible helical magnetic fields in extragalactic radio jets. In our model, structural inhomogeneities in the jet magnetic field create cancellation of polarization along the line of sight. Internal Faraday rotation, which increases like wavelength squared, acts to align the polarization from the far and near sides of the jet, leading to increased polarization at longer wavelengths. Structural inhomogeneities of the right type are naturally produced in helical magnetic fields and will also appear in randomly tangled magnetic fields. We explore both alternatives and find that, for random fields, the length scale for tangling cannot be too small a fraction of the jet diameter and still be consistent with the relatively high levels of fractional polarization observed in these features. We also find that helical magnetic fields naturally produce transverse structure for inverse depolarization which may be observable even in partially resolved jets.
Faraday rotation measures (RMs) of extragalactic radio sources provide information on line-of-sight magnetic fields, including contributions from our Galaxy, source environments, and the intergalactic medium (IGM). Looking at differences in RMs, $Del
We present a catalog of Faraday rotation measures (RMs) and redshifts for 4003 extragalactic radio sources detected at 1.4 GHz, derived by identifying optical counterparts and spectroscopic redshifts for linearly polarized radio sources from the NRAO
(abridged) Observations of Faraday rotation for extragalactic sources probe magnetic fields both inside and outside the Milky Way. Building on our earlier estimate of the Galactic contribution, we set out to estimate the extragalactic contributions.
We present a study of the line-of-sight magnetic fields in five large-diameter Galactic HII regions. Using the Faraday rotation of background polarized radio sources, as well as dust-corrected H-alpha surface brightness as a probe of electron density
RM Synthesis was recently developed as a new tool for the interpretation of polarized emission data in order to separate the contributions of different sources lying on the same line of sight. Until now the method was mainly applied to discrete sourc