ﻻ يوجد ملخص باللغة العربية
Ferromagnet/Superconductor/Ferromagnet (F/S/F) trilayers, in which the establishing of a Fulde-Ferrell Larkin-Ovchinnikov (FFLO) like state leads to interference effects of the superconducting pairing wave function, form the core of the superconducting spin valve. The realization of strong critical temperature oscillations in such trilayers, as a function of the ferromagnetic layer thicknesses or, even more efficient, reentrant superconductivity, are the key condition to obtain a large spin valve effect, i.e. a large shift in the critical temperature. Both phenomena have been realized experimentally in the Cu 41 Ni 59 /Nb/Cu 41 Ni 59 trilayers investigated in the present work.
Ferromagnet/Superconductor/Ferromagnet (F/S/F) trilayers constitute the core of a superconducting spin valve. The switching effect of the spin valve is based on interference phenomena occurring due to the proximity effect at the S/F interfaces. A rem
We investigated the upper critical magnetic field, $H_{c}$, of a superconductor-ferromagnet (S/F) bilayer of Nb/Cu$_{41}$Ni$_{59}$ and a Nb film (as reference). We obtained the dependence of $H_{cperp}$ and $H_{cparallel}$ (perpendicular and parallel
Andreev bound states are an expression of quantum coherence between particles and holes in hybrid structures composed of superconducting and non-superconducting metallic parts. Their spectrum carries important information on the nature of the pairing
The Fulde-Ferrel-Larkin-Ovchinnikov (FFLO) state near the antiferromagnetic quantum critical point (AFQCP) is investigated by analyzing the two dimensional Hubbard model on the basis of the fluctuation exchange (FLEX) approximation. The phase diagram
Superconductivity (SC) and charge-density wave (CDW) are two contrasting yet relevant collective electronic states which have received sustained interest for decades. Here we report that, in a layered europium bismuth sulfofluoride, EuBiS$_2$F, a CDW