ترغب بنشر مسار تعليمي؟ اضغط هنا

Discovery of the millisecond pulsar PSR J2043+1711 in a Fermi source with the Nancay Radio Telescope

116   0   0.0 ( 0 )
 نشر من قبل Lucas Guillemot
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the discovery of the millisecond pulsar PSR J2043+1711 in a search of a Fermi Large Area Telescope (LAT) source with no known associations, with the Nancay Radio Telescope. The new pulsar, confirmed with the Green Bank Telescope, has a spin period of 2.38 ms, is relatively nearby (d <~ 2 kpc), and is in a 1.48 day orbit around a low mass companion, probably a He-type white dwarf. Pulsed gamma-ray emission was detected in the data recorded by the Fermi LAT. The gamma-ray light curve and spectral properties are typical of other gamma-ray millisecond pulsars seen with Fermi. X-ray observations of the pulsar with Suzaku and the Swift/XRT yielded no detection. At 1.4 GHz we observe strong flux density variations because of interstellar diffractive scintillation, however a sharp peak can be observed at this frequency during bright scintillation states. At 327 MHz the pulsar is detected with a much higher signal-to-noise ratio and its flux density is far more steady. However, at that frequency the Arecibo instrumentation cannot yet fully resolve the pulse profile. Despite that, our pulse time-of-arrival measurements have a post-fit residual rms of 2 mus. This and the expected stability of this system has made PSR J2043+1711 one of the first new Fermi-selected millisecond pulsars to be added to pulsar gravitational wave timing arrays. It has also allowed a significant measurement of relativistic delays in the times of arrival of the pulses due to the curvature of space-time near the companion, but not yet with enough precision to derive useful masses for the pulsar and the companion. A mass for the pulsar between 1.7 and 2.0 solar masses can be derived if a standard millisecond pulsar formation model is assumed. In this article we also present a comprehensive summary of pulsar searches in Fermi LAT sources with the Nancay Radio Telescope to date.

قيم البحث

اقرأ أيضاً

We report the discovery of two millisecond pulsars in a search for radio pulsations at the positions of emph{Fermi Large Area Telescope} sources with no previously known counterparts, using the Nanc{c}ay radio telescope. The two millisecond pulsars, PSRs J2017+0603 and J2302+4442, have rotational periods of 2.896 and 5.192 ms and are both in binary systems with low-eccentricity orbits and orbital periods of 2.2 and 125.9 days respectively, suggesting long recycling processes. Gamma-ray pulsations were subsequently detected for both objects, indicating that they power the associated emph{Fermi} sources in which they were found. The gamma-ray light curves and spectral properties are similar to those of previously-detected gamma-ray millisecond pulsars. Detailed modeling of the observed radio and gamma-ray light curves shows that the gamma-ray emission seems to originate at high altitudes in their magnetospheres. Additionally, X-ray observations revealed the presence of an X-ray source at the position of PSR J2302+4442, consistent with thermal emission from a neutron star. These discoveries along with the numerous detections of radio-loud millisecond pulsars in gamma rays suggest that many emph{Fermi} sources with no known counterpart could be unknown millisecond pulsars.
Using the Giant Metrewave Radio Telescope (GMRT) we performed deep observations to search for radio pulsations in the directions of unidentified Fermi Large Area Telescope (LAT) gamma-ray sources. We report the discovery of an eclipsing black-widow m illisecond pulsar, PSR J1544+4937, identified with the un-cataloged gamma-ray source Fermi J1544.2+4941. This 2.16 ms pulsar is in a 2.9 hours compact circular orbit with a very low-mass companion (Mc > 0.017 Msun). At 322 MHz this pulsar is found to be eclipsing for 13% of its orbit, whereas at 607 MHz the pulsar is detected throughout the low-frequency eclipse phase. Variations in the eclipse ingress phase are observed, indicating a clumpy and variable eclipsing medium. Moreover, additional short-duration absorption events are observed around the eclipse boundaries. Using the radio timing ephemeris we were able to detect gamma-ray pulsations from this pulsar, confirming it as the source powering the gamma-ray emission.
We report the detection of radio emission from PSR J1311-3430, the first millisecond pulsar discovered in a blind search of Fermi Large Area Telescope (LAT) gamma-ray data. We detected radio pulsations at 2 GHz, visible for <10% of ~4.5-hrs of observ ations using the Green Bank Telescope (GBT). Observations at 5 GHz with the GBT and at several lower frequencies with Parkes, Nancay, and the Giant Metrewave Radio Telescope resulted in non-detections. We also report the faint detection of a steep spectrum continuum radio source (0.1 mJy at 5 GHz) in interferometric imaging observations with the Jansky Very Large Array. These detections demonstrate that PSR J1311-3430, is not radio quiet and provides additional evidence that the radio beaming fraction of millisecond pulsars is very large. The radio detection yields a distance estimate of 1.4 kpc for the system, yielding a gamma-ray efficiency of 30%, typical of LAT-detected MSPs. We see apparent excess delay in the radio pulsar as the pulsar appears from eclipse and we speculate on possible mechanisms for the non-detections of the pulse at other orbital phases and observing frequencies.
102 - Pei Wang , Di Li , Colin J. Clark 2021
High sensitivity radio searches of unassociated $gamma$-ray sources have proven to be an effective way of finding new pulsars. Using the Five-hundred-meter Aperture Spherical radio Telescope (FAST) during its commissioning phase, we have carried out a number of targeted deep searches of textit{Fermi} Large Area Telescope (LAT) $gamma$-ray sources. On Feb. 27$^{th}$, 2018 we discovered an isolated millisecond pulsar (MSP), PSR J0318+0253, coincident with the unassociated $gamma$-ray source 3FGL J0318.1+0252. PSR J0318+0253 has a spin period of $5.19$ milliseconds, a dispersion measure (DM) of $26$ pc cm$^{-3}$ corresponding to a DM distance of about $1.3$ kpc, and a period-averaged flux density of $sim$11 $pm$ 2 $mu$Jy at L-band (1.05-1.45 GHz). Among all high energy MSPs, PSR J0318+0253 is the faintest ever detected in radio bands, by a factor of at least $sim$4 in terms of L-band fluxes. With the aid of the radio ephemeris, an analysis of 9.6 years of textit{Fermi}-LAT data revealed that PSR J0318+0253 also displays strong $gamma$-ray pulsations. Follow-up observations carried out by both Arecibo and FAST suggest a likely spectral turn-over around 350 MHz. This is the first result from the collaboration between FAST and the textit{Fermi}-LAT teams as well as the first confirmed new MSP discovery by FAST, raising hopes for the detection of many more MSPs. Such discoveries will make a significant contribution to our understanding of the neutron star zoo while potentially contributing to the future detection of gravitational waves, via pulsar timing array (PTA) experiments.
The predicted nature of the candidate redback pulsar 3FGL,J2039.6$-$5618 was recently confirmed by the discovery of $gamma$-ray millisecond pulsations (Clark et al. 2020, hereafter Paper,I), which identify this $gamma$-ray source as msp. We observed this object with the Parkes radio telescope in 2016 and 2019. We detect radio pulsations at 1.4,GHz and 3.1,GHz, at the 2.6ms period discovered in $gamma$-rays, and also at 0.7,GHz in one 2015 archival observation. In all bands, the radio pulse profile is characterised by a single relatively broad peak which leads the main $gamma$-ray peak. At 1.4,GHz we found clear evidence of eclipses of the radio signal for about half of the orbit, a characteristic phenomenon in redback systems, which we associate with the presence of intra-binary gas. From the dispersion measure of $24.57pm0.03$,pc,cm$^{-3}$ we derive a pulsar distance of $0.9pm 0.2$,kpc or $1.7pm0.7$,kpc, depending on the assumed Galactic electron density model. The modelling of the radio and $gamma$-ray light curves leads to an independent determination of the orbital inclination, and to a determination of the pulsar mass, qualitatively consistent to the results in Paper,I.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا