ﻻ يوجد ملخص باللغة العربية
Solutions of the bivariate, linear errors-in-variables estimation problem with unspecified errors are expected to be invariant under interchange and scaling of the coordinates. The appealing model of normally distributed true values and errors is unidentified without additional information. I propose a prior density that incorporates the fact that the slope and variance parameters together determine the covariance matrix of the unobserved true values but is otherwise diffuse. The marginal posterior density of the slope is invariant to interchange and scaling of the coordinates and depends on the data only through the sample correlation coefficient and ratio of standard deviations. It covers the interval between the two ordinary least squares estimates but diminishes rapidly outside of it. I introduce the R package leiv for computing the posterior density, and I apply it to examples in astronomy and method comparison.
Non linear regression models are a standard tool for modeling real phenomena, with several applications in machine learning, ecology, econometry... Estimating the parameters of the model has garnered a lot of attention during many years. We focus her
Let $pi_1$ and $pi_2$ be two independent populations, where the population $pi_i$ follows a bivariate normal distribution with unknown mean vector $boldsymbol{theta}^{(i)}$ and common known variance-covariance matrix $Sigma$, $i=1,2$. The present pap
Estimating the unknown number of classes in a population has numerous important applications. In a Poisson mixture model, the problem is reduced to estimating the odds that a class is undetected in a sample. The discontinuity of the odds prevents the
In this note we consider the optimal design problem for estimating the slope of a polynomial regression with no intercept at a given point, say z. In contrast to previous work, which considers symmetric design spaces we investigate the model on the i
In the Gaussian linear regression model (with unknown mean and variance), we show that the standard confidence set for one or two regression coefficients is admissible in the sense of Joshi (1969). This solves a long-standing open problem in mathemat