ترغب بنشر مسار تعليمي؟ اضغط هنا

Inverse Compton X-ray Emission from Supernovae with Compact Progenitors: Application to SN2011fe

272   0   0.0 ( 0 )
 نشر من قبل Raffaella Margutti
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a generalized analytic formalism for the inverse Compton X-ray emission from hydrogen-poor supernovae and apply this framework to SN2011fe using Swift-XRT, UVOT and Chandra observations. We characterize the optical properties of SN2011fe in the Swift bands and find them to be broadly consistent with a normal SN Ia, however, no X-ray source is detected by either XRT or Chandra. We constrain the progenitor system mass loss rate to be lower than 2x10^-9 M_sun/yr (3sigma c.l.) for wind velocity v_w=100 km/s. Our result rules out symbiotic binary progenitors for SN2011fe and argues against Roche-lobe overflowing subgiants and main sequence secondary stars if >1% of the transferred mass is lost at the Lagrangian points. Regardless of the density profile, the X-ray non-detections are suggestive of a clean environment (particle density < 150 cm-3) for (2x10^15<R<5x10^16) cm around the progenitor site. This is either consistent with the bulk of material being confined within the binary system or with a significant delay between mass loss and supernova explosion. We furthermore combine X-ray and radio limits from Chomiuk et al. 2012 to constrain the post shock energy density in magnetic fields. Finally, we searched for the shock breakout pulse using gamma-ray observations from the Interplanetary Network and find no compelling evidence for a supernova-associated burst. Based on the compact radius of the progenitor star we estimate that the shock break out pulse was likely not detectable by current satellites.



قيم البحث

اقرأ أيضاً

191 - C.-I. Bjornsson 2013
Inhomogeneities in a synchrotron source can severely affect the conclusions drawn from observations regarding the source properties. However, their presence is not always easy to establish, since several other effects can give rise to similar observe d characteristics. It is argued that the recently observed broadening of the radio spectra and/or light curves in some of the type Ib/c supernovae is a direct indication of inhomogeneities. As compared to a homogeneous source, this increases the deduced velocity of the forward shock and the observed correlation between total energy and shock velocity could in part be due to a varying covering factor. The X-ray emission from at least some type Ib/c supernovae is unlikely to be synchrotron radiation from an electron distribution accelerated in a non-linear shock. Instead it is shown that the observed correlation during the first few hundred days between the radio, X-ray and bolometric luminosities indicates that the X-ray emission is inverse Compton scattering of the photospheric photons. Inhomogeneities are consistent with equipartition between electrons and magnetic fields in the optically thin synchrotron emitting regions.
The recent detection of TeV photons from two gamma-ray bursts (GRBs), GRB 190114C and GRB 180720B, has opened a new window for multi-messenger and multi-wavelength astrophysics of high-energy transients. We study the origin of very-high-energy (VHE) $gamma$-rays from the short GRB 160821B, for which the MAGIC Collaboration reported a $sim 3 sigma$ statistical significance. Short GRBs are often accompanied by extended and plateau emission, which is attributed to internal dissipation resulting from activities of a long-lasting central engine, and Murase et al. (2018) recently suggested the external inverse-Compton (EIC) scenario for VHE counterparts of short GRBs and neutron star mergers. Applying this scenario to GRB 160821B, we show that the EIC flux can reach $sim 10^{-12}rm~erg~cm^{-2}~s^{-1}$ within a time period of $sim 10^3 - 10^4rm~s$, which is consistent with the MAGIC observations. EIC $gamma$-rays expected during the extended and plateau emission will be detectable with greater significance by future detectors such as the Cherenkov Telescope Array (CTA). The resulting light curve has a distinguishable feature, where the VHE emission is predicted to reach the peak around the end of the seed emission.
Long-duration gamma-ray bursts (GRBs) originate from ultra-relativistic jets launched from the collapsing cores of dying massive stars. They are characterised by an initial phase of bright and highly variable radiation in the keV-MeV band that is lik ely produced within the jet and lasts from milliseconds to minutes, known as the prompt emission. Subsequently, the interaction of the jet with the external medium generates external shock waves, responsible for the afterglow emission, which lasts from days to months, and occurs over a broad energy range, from the radio to the GeV bands. The afterglow emission is generally well explained as synchrotron radiation by electrons accelerated at the external shock. Recently, an intense, long-lasting emission between 0.2 and 1 TeV was observed from the GRB 190114C. Here we present the results of our multi-frequency observational campaign of GRB~190114C, and study the evolution in time of the GRB emission across 17 orders of magnitude in energy, from $5times10^{-6}$ up to $10^{12}$,eV. We find that the broadband spectral energy distribution is double-peaked, with the TeV emission constituting a distinct spectral component that has power comparable to the synchrotron component. This component is associated with the afterglow, and is satisfactorily explained by inverse Compton upscattering of synchrotron photons by high-energy electrons. We find that the conditions required to account for the observed TeV component are not atypical, supporting the possibility that inverse Compton emission is commonly produced in GRBs.
169 - Ryo Yamazaki , Abraham Loeb 2015
Shocks around clusters of galaxies accelerate electrons which upscatter the Cosmic Microwave Background photons to higher-energies. We use an analytical model to calculate this inverse Compton (IC) emission, taking into account the effects of additio nal energy losses via synchrotron and Coulomb scattering. We find that the surface brightness of the optical IC emission increases with redshift and halo mass. The IC emission surface brightness, 32--34~mag~arcsec$^{-2}$, for massive clusters is potentially detectable by the newly developed Dragonfly Telephoto Array.
Millisecond pulsars are very likely the main source of gamma-ray emission from globular clusters. However, the relative contributions of two separate emission processes-curvature radiation from millisecond pulsar magnetospheres vs. inverse Compton em ission from relativistic pairs launched into the globular cluster environment by millisecond pulsars-has long been unclear. To address this, we search for evidence of inverse Compton emission in 8-year Fermi-LAT data from the directions of 157 Milky Way globular clusters. We find a mildly statistically significant (3.8$sigma$) correlation between the measured globular cluster gamma-ray luminosities and their photon field energy densities. However, this may also be explained by a hidden correlation between the photon field densities and the stellar encounter rates of globular clusters. Analysed in toto, we demonstrate that the gamma-ray emission of globular clusters can be resolved spectrally into two components: i) an exponentially cut-off power law and ii) a pure power law. The latter component-which we uncover at a significance of 8.2$sigma$-is most naturally interpreted as inverse Compton emission by cosmic-ray electrons and positrons injected by millisecond pulsars. We find the luminosity of this inverse Compton component is comparable to, or slightly smaller than, the luminosity of the curved component, suggesting the fraction of millisecond pulsar spin-down luminosity into relativistic leptons is similar to the fraction of the spin-down luminosity into prompt magnetospheric radiation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا