ترغب بنشر مسار تعليمي؟ اضغط هنا

High Multiplicity Searches at the LHC Using Jet Masses

58   0   0.0 ( 0 )
 نشر من قبل Mariangela Lisanti
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

This article introduces a new class of searches for physics beyond the Standard Model that improves the sensitivity to signals with high jet multiplicity. The proposed searches gain access to high multiplicity signals by reclustering events into large-radius, or fat, jets and by requiring that each event has multiple massive jets. This technique is applied to supersymmetric scenarios in which gluinos are pair-produced and then subsequently decay to final states with either moderate quantities of missing energy or final states without missing energy. In each of these scenarios, the use of jet mass improves the estimated reach in gluino mass by 20 % to 50 % over current LHC searches.

قيم البحث

اقرأ أيضاً

121 - Mark Strikman 2011
We analyze the structure of the high multiplicity events observed by the CMS collaboration at the LHC. We argue that the bulk of the observed correlations is due to the production of a pair of jets with p_t > 15 GeV/c. We also suggest that high multi plicity events are due to a combination of three effects: high underlying multiplicity for collisions at small impact parameters, upward fluctuations of the gluon density in the colliding protons, and production of hadrons in the fragmentation of dijets. The data analysis is suggested which may clarify the underlying dynamics of the high multiplicity events and probe fluctuations of the gluon field as a function of x.
In case of the discovery of supersymmetry at the LHC, the goal will be to identify the underlying theory, its fundamental parameters, and the masses of SUSY particles. We followed here the approach to reconstruct the decay chains in SUSY events under the assumption of common intermediate masses. These masses cannot be extracted from each event because of the unmeasured LSP momenta in case of R-parity conservation. But an ensemble of events can be over-constrained, if the decay chains are long enough, such that enough mass constraints are available. Here, we present a new method combining a) a SUSY mass scan, b) a kinematic fitting based on a genetic algorithm for decay chain reconstruction, and c) the usage of angular decay information to suppress the background from other SUSY processes. Taking into account the full combinatorial background and experimental resolutions in the most difficult case of the fully hadronic decay mode, we demonstrate, within one SUSY scenario, that this method can be used to derive a probability map of the SUSY parameter space.
Recently, the CMS Collaboration has published identified particle transverse momentum spectra in high multiplicity events at LHC energies $sqrt s $ = 0.9-13 TeV. In the present work the transverse momentum spectra have been analyzed in the framework of the color fields inside the clusters of overlapping strings, which are produced in high energy hadronic collisions. The non-Abelian nature is reflected in the coherence sum of the color fields which as a consequence gives rise to an enhancement of the transverse momentum and a suppression of the multiplicities relative to the non overlapping strings. The initial temperature and shear viscosity to entropy density ratio $eta/s$ are obtained. For the higher multiplicity events at $sqrt s $ =7 and 13 TeV the initial temperature is above the universal hadronization temperature and is consistent with the creation of de-confined matter. In these small systems it can be argued that the thermalization is a consequence of the quantum tunneling through the event horizon introduced by the confining color fields, in analogy to the Hawking-Unruh effect. The small shear viscosity to entropy density ratio $eta/s$ near the critical temperature suggests that the matter is a strongly coupled Quark Gluon Plasma.
We study differential cross sections for the production of three and four jets in multi-Regge kinematics, the main interest lying on azimuthal angle dependences. The theoretical setup is the jet production from a single BFKL ladder with a convolution of two/three BFKL Green functions, where two forward/backward jets are always tagged in the final state. Furthermore, we require the tagging of one/two further jets in more central regions of the detectors with a relative separation in rapidity. We found, as result, that the dependence on transverse momenta and rapidities of the central jets can be considered as a distinct signal of the onset of BFKL dynamics.
The properties of light leptoquarks predicted in the context of a simple grand unified theory and their observability at the LHC are investigated. The SU(5) symmetry of the theory implies that the leptoquark couplings to matter are related to the neu trino mass matrix. We study the resulting connection between neutrino masses and mixing parameters and the leptoquark decays, and show that different light neutrino hierarchies imply distinctive leptoquark decay signatures. We also discuss low-energy constraints implied by searches for charged lepton flavour violation, studies of meson decays, and electroweak precision data. We perform a detailed parton-level study of the leptoquark signals and the Standard Model backgrounds at the LHC. With the clean final states containing a di-lepton plus two jets, the QCD production of the leptoquark pair can be observed for a leptoquark mass of one TeV and beyond. By examining the lepton flavor structure of the observed events, one could further test the model predictions related to the neutrino mass spectrum. In particular, b-flavor tagging will be useful in distinguishing the neutrino mass pattern and possibly probing an unknown Majorana phase in the Inverted Hierarchy or the Quasi-Degenerate scenario. Electroweak associated production of the leptoquark doublet can also be useful in identifying the quantum numbers of the leptoquarks and distinguishing between the neutrino mass spectra, even though the corresponding event rates are smaller than for QCD production. We find that with only the clean channel of mu+ E_T jets, one could expect an observable signal for a leptoquark masses of about 600 GeV or higher.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا