ترغب بنشر مسار تعليمي؟ اضغط هنا

Radio-loud Magnetars as Detectors for Axions and Axion-like Particles

269   0   0.0 ( 0 )
 نشر من قبل Eduardo Guendelman I
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that, by studying the arrival times of radio pulses from highly-magnetized transient beamed sources, it may be possible to detect light pseudo-scalar particles, such as axions and axion-like particles, whose existence could have considerable implications for the strong-CP problem of QCD as well as the dark matter problem in cosmology. Specifically, such light bosons may be detected with a much greater sensitivity, over a broad particle mass range, than is currently achievable by terrestrial experiments, and using indirect astrophysical considerations. The observable effect was discussed in Chelouche & Guendelman (2009), and is akin to the Stern-Gerlach experiment: the splitting of a photon beam naturally arises when finite coupling exists between the electro-magnetic field and the axion field. The splitting angle of the light beams linearly depends on the photon wavelength, the size of the magnetized region, and the magnetic field gradient in the transverse direction to the propagation direction of the photons. If radio emission in radio-loud magnetars is beamed and originates in regions with strong magnetic field gradients, then splitting of individual pulses may be detectable. We quantify the effect for a simplified model for magnetars, and search for radio beam splitting in the 2,GHz radio light curves of the radio loud magnetar XTE,J1810-197.

قيم البحث

اقرأ أيضاً

Quiescent hard X-ray and soft gamma-ray emission from neutron stars constitute a promising frontier to explore axion-like-particles (ALPs). ALP production in the core peaks at energies of a few keV to a few hundreds of keV; subsequently, the ALPs esc ape and convert to photons in the magnetosphere. The emissivity goes as $sim T^6$ while the conversion probability is enhanced for large magnetic fields, making magnetars, with their high core temperatures and strong magnetic fields, ideal targets for probing ALPs. We compute the energy spectrum of photons resulting from conversion of ALPs in the magnetosphere and then compare it against hard X-ray data from NuSTAR, INTEGRAL, and XMM-Newton, for a set of eight magnetars for which such data exists. Upper limits are placed on the product of the ALP-nucleon and ALP-photon couplings. For the production in the core, we perform a calculation of the ALP emissivity in degenerate nuclear matter modeled by a relativistic mean field theory. The reduction of the emissivity due to improvements to the one-pion exchange approximation is incorporated, as is the suppression of the emissivity due to proton superfluidity in the neutron star core. A range of core temperatures is considered, corresponding to different models of the steady heat transfer from the core to the stellar surface. For the subsequent conversion, we solve the coupled differential equations mixing ALPs and photons in the magnetosphere. The conversion occurs due to a competition between the dipolar magnetic field and the photon refractive index induced by the external magnetic field. Semi-analytic expressions are provided alongside the full numerical results. We also present an analysis of the uncertainty on the axion limits we derive due to the uncertainties in the magnetar masses, nuclear matter equation of state, and the proton superfluid critical temperature.
It was recently pointed out that very energetic subclasses of supernovae (SNe), like hypernovae and superluminous SNe, might host ultra-strong magnetic fields in their core. Such fields may catalyze the production of feebly interacting particles, cha nging the predicted emission rates. Here we consider the case of axion-like particles (ALPs) and show that the predicted large scale magnetic fields in the core contribute significantly to the ALP production, via a coherent conversion of thermal photons. Using recent state-of-the-art SN simulations including magnetohydrodynamics, we find that if ALPs have masses $m_a sim {mathcal O}(10), rm MeV$, their emissivity via magnetic
We calculate the production of ultra-light axion-like particles (ALPs) in a nearby supernova progenitor. Once produced, ALPs escape from the star and a part of them is converted into photons during propagation in the Galactic magnetic field. It is fo und that the MeV photon flux that reaches Earth may be detectable by gamma ray telescopes for ALPs lighter than ~1 neV when Betelgeuse undergoes oxygen and silicon burning. (Non-)detection of gamma rays from a supernova progenitor with next-generation gamma ray telescopes just after pre-supernova neutrino alerts would lead to an independent constraint on ALP parameters as stringent as a SN 1987A limit.
We investigate the potential of type II supernovae (SNe) to constrain axion-like particles (ALPs) coupled simultaneously to nucleons and electrons. ALPs coupled to nucleons can be efficiently produced in the SN core via nucleon-nucleon bremsstrahlung and, for a wide range of parameters, leave the SN unhindered, producing a large ALP flux. For masses exceeding 1 MeV, these ALPs would decay into electron-positron pairs, generating a positron flux. In the case of Galactic SNe, the annihilation of the created positrons with the electrons present in the Galaxy would contribute to the 511 keV annihilation line. Using the SPI (SPectrometer on INTEGRAL) observation of this line, allows us to exclude a wide range of the axion-electron coupling, $10^{-19} lesssim g_{ae} lesssim 10^{-11}$, for $g_{ap}sim 10^{-9}$. Additionally, ALPs from extra-galactic SNe decaying into electron-positron pairs would yield a contribution to the cosmic X-ray background. In this case, we constrain the ALP-electron coupling down to $g_{ae} sim 10^{-20}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا