ترغب بنشر مسار تعليمي؟ اضغط هنا

A 2% Distance to z = 0.35 by Reconstructing Baryon Acoustic Oscillations - III : Cosmological Measurements and Interpretation

29   0   0.0 ( 0 )
 نشر من قبل Kushal Mehta
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use the 2% distance measurement from our reconstructed baryon acoustic oscillations (BAOs) signature using the Sloan Digital Sky Survey (SDSS) Data Release 7 (DR7) Luminous Red Galaxies (LRGs) from Padmanabhan et al. (2012) and Xu et al. (2012) combined with cosmic microwave background (CMB) data from Wilkinson Microwave Anisotropy Probe (WMAP7) to measure parameters for various cosmological models. We find a 1.7% measurement of H_0 = 69.8 +/- 1.2 km/s/Mpc and a 5.0% measurement of Omega_m = 0.280 +/- 0.014 for a flat Universe with a cosmological constant. These measurements of H_0 and Omega_m are robust against a range of underlying models for the expansion history. We measure the dark energy equation of state parameter w = -0.97 +/- 0.17, which is consistent with a cosmological constant. If curvature is allowed to vary, we find that the Universe is consistent with a flat geometry (Omega_K = -0.004 +/- 0.005). We also use a combination of the 6 Degree Field Galaxy Survey BAO data, WiggleZ Dark Energy Survey data, Type Ia supernovae (SN) data, and a local measurement of the Hubble constant to explore cosmological models with more parameters. Finally, we explore the effect of varying the energy density of relativistic particles on the measurement of H_0.

قيم البحث

اقرأ أيضاً

225 - Bruce A. Bassett 2009
Baryon Acoustic Oscillations (BAO) are frozen relics left over from the pre-decoupling universe. They are the standard rulers of choice for 21st century cosmology, providing distance estimates that are, for the first time, firmly rooted in well-under stood, linear physics. This review synthesises current understanding regarding all aspects of BAO cosmology, from the theoretical and statistical to the observational, and includes a map of the future landscape of BAO surveys, both spectroscopic and photometric.
We derive constraints on cosmological parameters and tests of dark energy models from the combination of baryon acoustic oscillation (BAO) measurements with cosmic microwave background (CMB) and Type Ia supernova (SN) data. We take advantage of high- precision BAO measurements from galaxy clustering and the Ly-alpha forest (LyaF) in the BOSS survey of SDSS-III. BAO data alone yield a high confidence detection of dark energy, and in combination with the CMB angular acoustic scale they further imply a nearly flat universe. Combining BAO and SN data into an inverse distance ladder yields a 1.7% measurement of $H_0=67.3 pm1.1$ km/s/Mpc. This measurement assumes standard pre-recombination physics but is insensitive to assumptions about dark energy or space curvature, so agreement with CMB-based estimates that assume a flat LCDM cosmology is an important corroboration of this minimal cosmological model. For open LCDM, our BAO+SN+CMB combination yields $Omega_m=0.301 pm 0.008$ and curvature $Omega_k=-0.003 pm 0.003$. When we allow more general forms of evolving dark energy, the BAO+SN+CMB parameter constraints remain consistent with flat LCDM. While the overall $chi^2$ of model fits is satisfactory, the LyaF BAO measurements are in moderate (2-2.5 sigma) tension with model predictions. Models with early dark energy that tracks the dominant energy component at high redshifts remain consistent with our constraints. Expansion history alone yields an upper limit of 0.56 eV on the summed mass of neutrino species, improving to 0.26 eV if we include Planck CMB lensing. Standard dark energy models constrained by our data predict a level of matter clustering that is high compared to most, but not all, observational estimates. (Abridged)
We measure the imprint of baryon acoustic oscillations (BAOs) in the galaxy clustering pattern at the highest redshift achieved to date, z=0.6, using the distribution of N=132,509 emission-line galaxies in the WiggleZ Dark Energy Survey. We quantify BAOs using three statistics: the galaxy correlation function, power spectrum and the band-filtered estimator introduced by Xu et al. (2010). The results are mutually consistent, corresponding to a 4.0% measurement of the cosmic distance-redshift relation at z=0.6 (in terms of the acoustic parameter A(z) introduced by Eisenstein et al. (2005) we find A(z=0.6) = 0.452 +/- 0.018). Both BAOs and power spectrum shape information contribute toward these constraints. The statistical significance of the detection of the acoustic peak in the correlation function, relative to a wiggle-free model, is 3.2-sigma. The ratios of our distance measurements to those obtained using BAOs in the distribution of Luminous Red Galaxies at redshifts z=0.2 and z=0.35 are consistent with a flat Lambda Cold Dark Matter model that also provides a good fit to the pattern of observed fluctuations in the Cosmic Microwave Background (CMB) radiation. The addition of the current WiggleZ data results in a ~ 30% improvement in the measurement accuracy of a constant equation-of-state, w, using BAO data alone. Based solely on geometric BAO distance ratios, accelerating expansion (w < -1/3) is required with a probability of 99.8%, providing a consistency check of conclusions based on supernovae observations. Further improvements in cosmological constraints will result when the WiggleZ Survey dataset is complete.
We present a measurement of baryon acoustic oscillations (BAO) in the cross-correlation of quasars with the Ly$alpha$-forest flux-transmission at a mean redshift $z=2.40$. The measurement uses the complete SDSS-III data sample: 168,889 forests and 23 4,367 quasars from the SDSS Data Release DR12. In addition to the statistical improvement on our previous study using DR11, we have implemented numerous improvements at the analysis level allowing a more accurate measurement of this cross-correlation. We also developed the first simulations of the cross-correlation allowing us to test different aspects of our data analysis and to search for potential systematic errors in the determination of the BAO peak position. We measure the two ratios $D_{H}(z=2.40)/r_{d} = 9.01 pm 0.36$ and $D_{M}(z=2.40)/r_{d} = 35.7 pm 1.7$, where the errors include marginalization over the non-linear velocity of quasars and the metal - quasar cross-correlation contribution, among other effects. These results are within $1.8sigma$ of the prediction of the flat-$Lambda$CDM model describing the observed CMB anisotropies. We combine this study with the Ly$alpha$-forest auto-correlation function [2017A&A...603A..12B], yielding $D_{H}(z=2.40)/r_{d} = 8.94 pm 0.22$ and $D_{M}(z=2.40)/r_{d} = 36.6 pm 1.2$, within $2.3sigma$ of the same flat-$Lambda$CDM model.
69 - Cong Ma 2016
We test the distance--duality relation $eta equiv d_L / [ (1 + z)^2 d_A ] = 1$ between cosmological luminosity distance ($d_L$) from the JLA SNe Ia compilation (arXiv:1401.4064) and angular-diameter distance ($d_A$) based on Baryon Oscillation Spectr oscopic Survey (BOSS; arXiv:1607.03155) and WiggleZ baryon acoustic oscillation measurements (arXiv:1105.2862, arXiv:1204.3674). The $d_L$ measurements are matched to $d_A$ redshift by a statistically consistent compression procedure. With Monte Carlo methods, nontrivial and correlated distributions of $eta$ can be explored in a straightforward manner without resorting to a particular evolution template $eta(z)$. Assuming independent constraints on cosmological parameters that are necessary to obtain $d_L$ and $d_A$ values, we find 9% constraints consistent with $eta = 1$ from the analysis of SNIa + BOSS and an 18% bound results from SNIa + WiggleZ. These results are contrary to previous claims that $eta < 1$ has been found close to or above the $1 sigma$ level. We discuss the effect of different cosmological parameter inputs and the use of the apparent deviation from distance--duality as a proxy of systematic effects on cosmic distance measurements. The results suggest possible systematic overestimation of SNIa luminosity distances compared with $d_A$ data when a Planck {Lambda}CDM cosmological parameter inference (arXiv:1502.01589) is used to enhance the precision. If interpreted as an extinction correction due to a gray dust component, the effect is broadly consistent with independent observational constraints.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا