ﻻ يوجد ملخص باللغة العربية
Robust estimation of location and concentration parameters for the von Mises-Fisher distribution is discussed. A key reparametrisation is achieved by expressing the two parameters as one vector on the Euclidean space. With this representation, we first show that maximum likelihood estimator for the von Mises-Fisher distribution is not robust in some situations. Then we propose two families of robust estimators which can be derived as minimisers of two density power divergences. The presented families enable us to estimate both location and concentration parameters simultaneously. Some properties of the estimators are explored. Simple iterative algorithms are suggested to find the estimates numerically. A comparison with the existing robust estimators is given as well as discussion on difference and similarity between the two proposed estimators. A simulation study is made to evaluate finite sample performance of the estimators. We consider a sea star dataset and discuss the selection of the tuning parameters and outlier detection.
The von Mises-Fisher distribution is one of the most widely used probability distributions to describe directional data. Finite mixtures of von Mises-Fisher distributions have found numerous applications. However, the likelihood function for the fini
Speaker Diarization (i.e. determining who spoke and when?) for multi-speaker naturalistic interactions such as Peer-Led Team Learning (PLTL) sessions is a challenging task. In this study, we propose robust speaker clustering based on mixture of multi
Circular variables arise in a multitude of data-modelling contexts ranging from robotics to the social sciences, but they have been largely overlooked by the machine learning community. This paper partially redresses this imbalance by extending some
A number of pattern recognition tasks, textit{e.g.}, face verification, can be boiled down to classification or clustering of unit length directional feature vectors whose distance can be simply computed by their angle. In this paper, we propose the
Let $F_N$ and $F$ be the empirical and limiting spectral distributions of an $Ntimes N$ Wigner matrix. The Cram{e}r-von Mises (CvM) statistic is a classical goodness-of-fit statistic that characterizes the distance between $F_N$ and $F$ in $ell^2$-no