ترغب بنشر مسار تعليمي؟ اضغط هنا

Crystal structure and physical properties of AmPd5Al2

81   0   0.0 ( 0 )
 نشر من قبل Krzysztof Gofryk
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the crystal structure, magnetic susceptibility, specific heat, electrical and thermoelectrical properties of AmPd5Al2, the americium counterpart of the unconventional superconductor NpPd5Al2. AmPd5Al2 crystallizes in the ZrNi2Al5-type of structure with lattice parameters: a = 4.1298 A and c = 14.7925 A. Magnetic measurements of AmPd5Al2 indicate a paramagnetic behavior with no hint of magnetic ordering nor superconductivity down to 2 K. This aspect is directly related to its 5f6 electronic configuration with J = 0. The specific heat measurements confirm the non magnetic ground state of this compound. The low temperature electronic specific heat gamma_el = 20 mJ mol-1K-2 is clearly enhanced as compared to americium metal. All transport measurements obtained point to a metallic behavior in AmPd5Al2.

قيم البحث

اقرأ أيضاً

In the exploration of new osmium based double perovskites, Sr2FeOsO6 is a new insertion in the existing family. The polycrystalline compound has been prepared by solid state synthesis from the respective binary oxides. PXRD analysis shows the structu re is pseudo-cubic at room temperature, whereas low-temperature synchrotron data refinements reveal the structure to be tetragonal, space group I4/m. Heat capacity and magnetic measurements of Sr2FeOsO6 indicated the presence of two magnetic phase transitions at T1 = 140 K and T2 = 67 K. Band structure calculations showed the compound as a narrow energy gap semiconductor, which supports the experimental results obtained from the resistivity measurements. The present study documents significant structural and electronic effects of substituting Fe3+ for Cr3+ ion in Sr2CrOsO6.
We have synthesized a new layered oxychalcogenide La2O2Bi3AgS6. From synchrotron X-ray diffraction and Rietveld refinement, the crystal structure of La2O2Bi3AgS6 was refined using a model of the P4/nmm space group with a = 4.0644(1) {AA} and c = 19.4 12(1) {AA}, which is similar to the related compound LaOBiPbS3, while the interlayer bonds (M2-S1 bonds) are apparently shorter in La2O2Bi3AgS6. The tunneling electron microscopy (TEM) image confirmed the lattice constant derived from Rietveld refinement (c ~ 20 {AA}). The electrical resistivity and Seebeck coefficient suggested that the electronic states of La2O2Bi3AgS6 are more metallic than those of LaOBiS2 and LaOBiPbS3. The insertion of a rock-salt-type chalcogenide into the van der Waals gap of BiS2-based layered compounds, such as LaOBiS2, will be a useful strategy for designing new layered functional materials in the layered chalcogenide family.
65 - Yong Liu , Tao Ma , Lin Zhou 2019
We report on the crystal and magnetic structures, magnetic, and transport properties of SrMnSb$_2$ single crystals grown by the self-flux method. Magnetic susceptibility measurements reveal an antiferromagnetic (AFM) transition at $T_{rm N} = 295(3)$ K. Above $T_{rm N}$, the susceptibility slightly increases and forms a broad peak at $T sim 420$ K, which is a typical feature of two-dimensional magnetic systems. Neutron diffraction measurements on single crystals confirm the previously reported C-type AFM structure below $T_{rm N}$. Both de Haas-van Alphen (dHvA) and Shubnikov-de Haas (SdH) effects are observed in SrMnSb$_2$ single crystals. Analysis of the oscillatory component by a Fourier transform shows that the prominent frequencies obtained by the two different techniques are practically the same within error regardless of sample size or saturated magnetic moment. Transmission electron microscopy (TEM) reveals the existence of stacking faults in the crystals, which result from a horizontal shift of Sb atomic layers suggesting possible ordering of Sb vacancies in the crystals. Increase of temperature in susceptibility measurements leads to the formation of a strong peak at $T sim {570}$ K that upon cooling under magnetic field the susceptibility shows a ferromagnetic transition at $T_{rm C} sim 580$ K. Neutron powder diffraction on crushed single-crystals does not support an FM phase above $T_{rm N}$. Furthermore, X-ray magnetic circular dichroism (XMCD) measurements of a single crystal at the $L_{2,3}$ edge of Mn shows a signal due to induced canting of AFM moments by the applied magnetic field. All evidence strongly suggests that a chemical transformation at the surface of single crystals occurs above 500 K concurrently producing a minute amount of ferromagnetic impurity phase.
87 - L. Zhao , Z. Hu , H. Guo 2021
We report on the synthesis and physical properties of cm-sized CoGeO$_3$ single crystals grown in a high pressure mirror furnace at pressures of 80~bar. Direction dependent magnetic susceptibility measurements on our single crystals reveal highly ani sotropic magnetic properties that we attribute to the impact of strong single ion anisotropy appearing in this system with T$_N$~$sim$~33.5~K. Furthermore, we observe effective magnetic moments that are exceeding the spin only values of the Co ions which reveals the presence of sizable orbital moments in CoGeO$_3$.
We report the synthesis of EuPtIn$_{4}$ single crystalline platelets by the In-flux technique. This compound crystallizes in the orthorhombic Cmcm structure with lattice parameters $a=4.542(1)$ AA, $b=16.955(2)$ AA$,$ and $c=7.389(1)$ AA. Measurement s of magnetic susceptibility, heat capacity, electrical resistivity, and electron spin resonance (ESR) reveal that EuPtIn$_{4}$ is a metallic Curie-Weiss paramagnet at high temperatures and presents antiferromagnetic (AFM) ordering below $T_{N}=13.3$ K. In addition, we observe a successive anomaly at $T^{*} = 12.6$ K and a spin-flop transition at $H_{c} sim 2.5$ T applied along the $ac$-plane. In the paramagnetic state, a single Eu$^{2+}$ Dysonian ESR line with a Korringa relaxation rate of $b = 4.1(2)$ Oe/K is observed. Interestingly, even at high temperatures, both ESR linewidth and electrical resistivity reveal a similar anisotropy. We discuss a possible common microscopic origin for the observed anisotropy in these physical quantities likely associated with an anisotropic magnetic interaction between Eu$^{2+}$ 4$f$ electrons mediated by conduction electrons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا