ﻻ يوجد ملخص باللغة العربية
The radiation from the central regions of active galactic nuclei, including that from the accretion disk surrounding the black hole, is likely to peak in the extreme ultraviolet $sim 13 -100$ eV. However, due to Galactic absorption, we are limited to constrain the physical properties, i.e. the black hole mass and the accretion rate, from what observations we have below $sim 10$ eV or above $sim 100$ eV. In this paper we predict the thermal and ionization states of warm absorbers as a function of the shape of the unobservable continuum. In particular we model an accretion disk at $kT_{in} sim 10$ eV and a {it soft excess} at $kT_{se} sim 150$ eV. The warm absorber, which is the highly ionized gas along the line of sight to the continuum, shows signatures in the $sim 0.3 - 2$ keV energy range consisting of numerous absorption lines and edges of various ions, some of the prominent ones being H- and He-like oxygen, neon, magnesium and silicon. We find that the properties of the warm absorber are significantly influenced by the changes in the temperature of the accretion disk, as well as by the strength of the {it soft excess}, as they affect the optical depth particularly for iron and oxygen. These trends may help develop a method of characterising the shape of the unobservable continuum and the occurrence of warm absorbers.
Warm absorbers are present in many Active Galactic Nuclei (AGN), seen as mildly ionised gas outflowing with velocities of a few hundred to a few thousand kilometres per second. These slow velocities imply a large launch radius, pointing to the broad
The X-ray spectra of many active galactic nuclei (AGN) show a soft X-ray excess below 1-2 keV on top of the extrapolated high- energy power law. The origin of this component is uncertain. It could be a signature of relativistically blurred, ionized r
In this paper we examine the percentage of type 1 AGN which require the inclusion of a soft excess component and/or significant cold absorption in the modelling of their X-ray spectra obtained by XMM-Newton. We do this by simulating spectra which mim
We present both phenomenological and more physical photoionization models of the Chandra HETG spectra of the Seyfert-1 AGN NGC 4051. We detect 40 absorption and emission lines, encompassing highly ionized charge states from O, Ne, Mg, Si, S and the F
Warm absorbers are found in many AGN and consist of clouds moving at moderate radial velocities, showing complex ionization structures and having moderate to large column densities. Using 1D numerical calculations, we confirm earlier suggestions that