ترغب بنشر مسار تعليمي؟ اضغط هنا

Clouds and red giants interacting with the base of AGN jets

49   0   0.0 ( 0 )
 نشر من قبل Valenti Bosch-Ramon
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Extragalactic jets are formed close to supermassive black-holes in the center of galaxies. Large amounts of gas, dust, and stars cluster in the galaxy nucleus, and interactions between this ambient material and the jet base should be frequent, having dynamical as well as radiative consequences. This work studies the dynamical interaction of an obstacle, a clump of matter or the atmosphere of an evolved star, with the innermost region of an extragalactic jet. Jet mass-loading and the high-energy outcome of this interaction are briefly discussed. Relativistic hydrodynamical simulations with axial symmetry have been carried out for homogeneous and inhomogeneous obstacles inside a relativistic jet. These obstacles may represent a medium inhomogeneity or the disrupted atmosphere of a red giant star. Once inside the jet, an homogeneous obstacle expands and gets disrupted after few dynamical timescales, whereas in the inhomogeneous case, a solid core can smoothen the process, with the obstacle mass-loss dominated by a dense and narrow tail pointing in the direction of the jet. In either case, matter is expected to accelerate and eventually get incorporated to the jet. Particles can be accelerated in the interaction region, and produce variable gamma-rays in the ambient matter, magnetic and photon fields. The presence of matter clumps or red giants into the base of an extragalactic jet likely implies significant jet mass-loading and slowing down. Fast flare-like gamma-ray events, and some level of persistent emission, are expected due to these interactions.

قيم البحث

اقرأ أيضاً

Dense populations of stars surround the nuclear regions of galaxies. In active galactic nuclei, these stars can interact with the relativistic jets launched by the supermasive black hole. In this work, we study the interaction of early-type stars wit h relativistic jets in active galactic nuclei. A bow-shaped double-shock structure is formed as a consequence of the interaction of the jet and the stellar wind of each early-type star. Particles can be accelerated up to relativistic energies in these shocks and emit high-energy radiation. We compute, considering different stellar densities of the galactic core, the gamma-ray emission produced by non-thermal radiative processes. This radiation may be significant in some cases, and its detection might yield valuable information on the properties of the stellar population in the galaxy nucleus, as well as on the relativistic jet. This emission is expected to be particularly relevant for nearby non-blazar sources.
Dense populations of stars surround the nuclear regions of galaxies. In this work, we study the interaction of a WR star with relativistic jets in active galactic nuclei. A bow-shaped double-shock structure will form as a consequence of the interacti on of the jet and the wind of the star. Particles can be accelerated up to relativistic energies in these shocks and emit high-energy radiation. We compute the produced gamma-ray emission obtaining that this radiation may be significant. This emission is expected to be particularly relevant for nearby non-blazar sources.
We study the interaction of early-type stars with the jets of active galactic nuclei. A bow-shock will form as a consequence of the interaction of the jet with the winds of stars and particles can be accelerated up to relativistic energies in these s hocks. We compute the non-thermal radiation produced by relativistic electrons from radio to gamma-rays. This radiation may be significant, and its detection might yield information on the properties of the stellar population in the galaxy nucleus, as well as on the relativistic jet. This emission is expected to be relevant for nearby non-blazar sources.
149 - J. Heil , M. Zacharias 2020
Flaring activity in blazars can last for vastly different time-scales, and may be the result of density enhancements in the jet flow that result from the intrusion of an interstellar cloud into the jet. We investigate the lightcurves expected from th e ablation of gas clouds by the blazar jet under various cloud and jet configurations. We derive the semi-analytical formulae describing the ablation process of a hydrostatic cloud, and perform parameter scans of artificial set-ups over both cloud and jet parameter spaces. We then use parameters obtained from measurements of various cloud types to produce lightcurves of these cloud examples. The parameter scans show that a vast zoo of symmetrical lightcurves can be realized. Both cloud and emission region parameters significantly influence the duration, and strength of the flare. The scale height of the cloud is one of the most important parameters, as it determines the shape of the lightcurve. In turn, important cloud parameters can be deduced from the observed shape of a flare. The example clouds result in significant flares lasting for various time scales.
The space-borne missions CoRoT and Kepler are indiscreet. With their asteroseismic programs, they tell us what is hidden deep inside the stars. Waves excited just below the stellar surface travel throughout the stellar interior and unveil many secret s: how old is the star, how big, how massive, how fast (or slow) its core is dancing. This paper intends to emph{paparazze} the red giants according to the seismic pictures we have from their interiors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا