ترغب بنشر مسار تعليمي؟ اضغط هنا

X-Ray Searches for Solar Axions

124   0   0.0 ( 0 )
 نشر من قبل Hugh Hudson
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Axions generated thermally in the solar core can convert nearly directly to X-rays as they pass through the solar atmosphere via interaction with the magnetic field. The result of this conversion process would be a diffuse centrally-concentrated source of few-keV X-rays at disk center; it would have a known dimension, of order 10% of the solar diameter, and a spectral distribution resembling the blackbody spectrum of the solar core. Its spatial structure in detail would depend on the distribution of mass and field in the solar atmosphere. The brightness of the source depends upon these factors as well as the unknown coupling constant and the unknown mass of the axion; this particle is hypothetical and no firm evidence for its existence has been found yet. We describe the solar magnetic environment as an axion/photon converter and discuss the upper limits obtained by existing and dedicated observations from three solar X-ray observatories: Yohkoh, RHESSI, and Hinode

قيم البحث

اقرأ أيضاً

102 - R. Horvat , M. Krcmar , B. Lakic 2001
We analyze the data from two recent experiments designed to search for solar axions within the context of multidimensional theories of the Kaluza-Klein type. In these experiments, axions were supposed to be emitted from the solar core, in M1 transiti ons between the first excited state and the ground state of 57Fe and 7Li. Because of the high multiplicity of axionic Kaluza-Klein states which couple with the strength of ordinary QCD axions, we obtain much more stringent experimental limits on the four-dimensional Peccei-Quinn breaking scale f_{PQ}, compared with the solar QCD axion limit. Specifically, for the 57Fe experiment, f_{PQ}>1x10^6 GeV in theories with two extra dimensions and a higher-dimensional gravitational scale M_H of order 100 TeV, and f_{PQ}>1x10^6 GeV in theories with three extra dimensions and M_H of order 1 TeV (to be compared with the QCD axion limit, f_{PQ}>8x10^3 GeV). For the 7Li experiment, f_{PQ}>1.4x10^5 GeV and 3.4x10^5 GeV, respectively (to be compared with the QCD axion limit, f_{PQ}>1.9x10^2 GeV). It is an interesting feature of our results that, in most cases, the obtained limit on f_{PQ} cannot be coupled with the mass of the axion, which is essentially set by the (common) radius of the extra dimensions.
Standard solar physics cannot account for the X-ray emission and other puzzles, the most striking example being the solar corona mystery. The corona temperature rise above the non-flaring magnetized sunspots, while the photosphere just underneath bec omes cooler, makes this mystery more intriguing. The paradoxical Sun is suggestive of some sort of exotic solution, axions being the (only?) choice for the missing ingredient. We present atypical axion signatures, which depict solar axions with a rest mass max ~17 meV/c2. Then, the Sun has been for decades the overlooked harbinger of new particle physics.
113 - A. Parikh , J. Jose , G. Sala 2012
Type I X-ray bursts are thermonuclear explosions that occur in the envelopes of accreting neutron stars. Detailed observations of these phenomena have prompted numerous studies in theoretical astrophysics and experimental nuclear physics since their discovery over 35 years ago. In this review, we begin by discussing key observational features of these phenomena that may be sensitive to the particular patterns of nucleosynthesis from the associated thermonuclear burning. We then summarize efforts to model type I X-ray bursts, with emphasis on determining the nuclear physics processes involved throughout these bursts. We discuss and evaluate limitations in the models, particularly with regard to key uncertainties in the nuclear physics input. Finally, we examine recent, relevant experimental measurements and outline future prospects to improve our understanding of these unique environments from observational, theoretical and experimental perspectives.
We study the nature of energy release and transfer for two sub-A class solar microflares observed during the second flight of the Focusing Optics X-ray Solar Imager (FOXSI-2) sounding rocket experiment on 2014 December 11. FOXSI is the first solar-de dicated instrument to utilize focusing optics to image the Sun in the hard X-ray (HXR) regime, sensitive to the energy range 4-20 keV. Through spectral analysis of the two microflares using an optically thin isothermal plasma model, we find evidence for plasma heated to temperatures of ~10 MK and emissions measures down to ~$10^{44}~$cm$^{-3}$. Though nonthermal emission was not detected for the FOXSI-2 microflares, a study of the parameter space for possible hidden nonthermal components shows that there could be enough energy in nonthermal electrons to account for the thermal energy in microflare 1, indicating that this flare is plausibly consistent with the standard thick-target model. With a solar-optimized design and improvements in HXR focusing optics, FOXSI-2 offers approximately five times greater sensitivity at 10 keV than the Nuclear Spectroscopic Telescope Array (NuSTAR) for typical microflare observations and allows for the first direct imaging spectroscopy of solar HXRs with an angular resolution at scales relevant for microflares. Harnessing these improved capabilities to study the evolution of small-scale events, we find evidence for spatial and temporal complexity during a sub-A class flare. These studies in combination with contemporanous observations by the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory (SDO/AIA) indicate that the evolution of these small microflares is more similar to that of large flares than to the single burst of energy expected for a nanoflare.
The energy and spectral shape of radio bursts may help us understand the generation mechanism of solar eruptions, including solar flares, CMEs, eruptive filaments, and various scales of jets. The different kinds of flares may have different character istics of energy and spectral distribution. In this work, we selected 10 mostly confined flare events during October 2014 to investigate their overall spectral behavior and the energy emitted in microwaves by using radio observations from microwaves to interplanetary radio waves, and X-ray observations of GOES, RHESSI, and Fermi/GBM. We found that: All the confined flare events were associated with a microwave continuum burst extending to frequencies of 9.4 - 15.4 GHz, and the peak frequencies of all confined flare events are higher than 4.995 GHz and lower than or equal to 17 GHz. The median value is around 9 GHz. The microwave burst energy (or fluence) as well as the peak frequency are found to provide useful criteria to estimate the power of solar flares. The observations imply that the magnetic field in confined flares tends to be stronger than that in 412 flares studied by Nita et al. 2004. All 10 events studied did not produce detectable hard X-rays with energies above 300 keV indicating the lack of efficient acceleration of electrons to high energies in the confined flares.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا