ﻻ يوجد ملخص باللغة العربية
Through extended integrations using the recently-installed deep depletion CCD on the red arm of the Keck I Low Resolution Imaging Spectrograph, we present new measurements of the resolved spectra of 70 morphologically-selected star-forming galaxies with i_AB<24.1 in the redshift range 1<z<1.7. Using the formalism introduced in Paper I of this series and available HST ACS images, we successfully recover rotation curves using the extended emission line distribution of [O II] 3727 A to 2.2 times the disk scale radius for a sample of 42 galaxies. Combining these measures with stellar masses derived from HST and ground-based near-infrared photometry enables us to construct the stellar mass Tully-Fisher relation in the time interval between the well-constructed relation defined at z~1 in Paper I and the growing body of resolved dynamics probed with integral field unit spectrographs at z>2. Remarkably, we find a well-defined Tully-Fisher relation with up to 60% increase in scatter and stellar mass zero-point shift constraint of 0.02+/-0.02 dex since z~1.7, compared to the local relation. Although our sample is incomplete in terms of either a fixed stellar mass or star formation rate limit, we discuss the implications that typical star-forming disk galaxies evolve to arrive on a well-defined Tully-Fisher relation within a surprisingly short period of cosmic history.
We present new measures of the evolving scaling relations between stellar mass, luminosity and rotational velocity for a morphologically-inclusive sample of 129 disk-like galaxies with z_AB<22.5 in the redshift range 0.2<z<1.3, based on spectra from
We explore the use of the baryonic Tully-Fisher relation (bTFR) as a new distance indicator. Advances in near-IR imaging and stellar population models, plus precise rotation curves, have reduced the scatter in the bTFR such that distance is the domin
In order to explore local large-scale structures and velocity fields, accurate galaxy distance measures are needed. We now extend the well-tested recipe for calibrating the correlation between galaxy rotation rates and luminosities -- capable of prov
[abr.] Using the multi-integral-field spectrograph GIRAFFE at VLT, we previsouly derived the stellar-mass Tully-Fisher Relation (smTFR) at z~0.6, and found that the distant relation is systematically offset by roughly a factor of two toward lower mas
We describe the first results of a programme to obtain rotation curves of z~1 disc galaxies in the near-infrared using the Ha emission line in order to study the Tully-Fisher relation. To put any observed evolution into perspective and to investigate