ترغب بنشر مسار تعليمي؟ اضغط هنا

Phase transformation in steel alloys for magnetocaloric applications; Fe$_{85-x}$Cr$_{15}$Ni$_{x}$ and Fe$_{85-x}$Cr$_{15}$Mn$_{x}$ as prototypes

141   0   0.0 ( 0 )
 نشر من قبل Petros Souvatzis Dr
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We here show by first principles theory that it is possible to achieve a structural and magnetic phase transition in common steel alloys like Fe$_{85}$Cr$_{15}$, by alloying with Ni or Mn. The predicted phase transition is from the ferromagnetic body centered cubic (bcc) phase to the paramagnetic face centered cubic (fcc) phase. The relatively high average magnetic moment of $sim1.4mu_{B}$/atom predicted at the transition suggests that stainless steel potentially can present a magnetocaloric effect strong enough to make these alloys good candidates for refrigeration applications operating at and around room temperature.



قيم البحث

اقرأ أيضاً

We demonstrate by means of fully relativistic first principles calculations that, by substitution of Fe by Cr, Mn, Co, Ni or Cu in FePt-L10 bulk alloys, with fixed Pt content, it is possible to tune the magnetocrystalline anisotropy energy by adjusti ng the content of the non-magnetic species in the material. The changes in the geometry due to the inclusion of each element induces different values of the tetragonality and hence changes in the magnetic anisotropy and in the net magnetic moment. The site resolved magnetic moments of Fe increase with the X content whilst those of Pt and X are simultaneously reduced. The calculations are in good quantitative agreement with experimental data and demonstrate that models with fixed band structure but varying numbers of electrons per unit cell are insufficient to describe the experimental data for doped FePt-L10 alloys.
127 - Somnath Jana 2018
Element specific ultrafast demagnetization was studied in Fe$_{1-x}$Ni$_{x}$ alloys, covering the concentration range between $0.1<x<0.9$. For all compositions, we observe a delay in the onset of Ni demagnetization relative to the Fe demagnetization. We find that the delay is correlated to the Curie temperature and hence also the exchange interaction. The temporal evolution of demagnetization is fitted to a magnon diffusion model based on the presupposition of enhanced ultrafast magnon generation in the Fe sublattice. The spin wave stiffness extracted from this model correspond well to known experimental values.
Fe3Si is a ferromagnetic material with possible applications in magnetic tunnel junctions. When doped with Mn, the material shows a complex magnetic behavior, as suggested by older experiments. We employed the Korringa-Kohn-Rostoker (KKR) Green funct ion method within density-functional theory (DFT) in order to study the alloy Fe(3-x)Mn(x)Si, with 0 < x < 1. Chemical disorder is described within the coherent potential approximation (CPA). In agreement with experiment, we find that the Mn atoms align ferromagnetically to the Fe atoms, and that the magnetization and Curie temperature drop with increasing Mn-concentration $x$. The calculated spin polarization P at the Fermi level varies strongly with x, from P=-0.3 at x=0 (ordered Fe3Si) through P=0 at x=0.28, to P=+1 for x>0.75; i.e., at high Mn concentrations the system is half-metallic. We discuss the origin of the trends of magnetic moments, exchange interactions, Curie temperature and the spin polarization.
143 - S. S. Acharya 2019
This paper reports high resolution X-ray photoelectron spectroscopy (XPS) studies on Fe$_{1-x}$Ni$_x$ (x=0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.9) alloys down to 10 K temperature. Core levels and Auger transitions of the alloys except the invar alloy (x=0.4 ) exhibit no observable temperature induced changes. The invar alloy exhibits changes in the core levels below 20 K temperature that strongly depend on the core level. Such core level dependent changes with temperature were attributed to the precipitation of spin glass like phase below 20 K only in the invar alloy. Ni L$_3$M$_{45}$M$_{45}$ Auger transition also supported such precipitation below 20 K.
141 - S. S. Acharya 2019
In this paper, high Fe-concentration Fe$_{1-x}$Ni$_{x}$ alloys were investigated using high resolution X-ray photoelectron spectroscopy (XPS) down to 10K temperature. The Fe 2s core level exhibits three features, two low binding features correspondin g to exchange interaction between ionized 2s core level and the unpaired 3d electrons. The high binding energy feature corresponds to the screening of 2s core hole by 4s conduction electrons. Our studies suggest high local magnetic moments on Fe sites.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا