ترغب بنشر مسار تعليمي؟ اضغط هنا

The late-time afterglow of the extremely energetic short burst GRB 090510 revisited

97   0   0.0 ( 0 )
 نشر من قبل Sylvio Klose
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The discovery of the short GRB 090510 has raised considerable attention mainly because it had a bright optical afterglow and it is among the most energetic events detected so far within the entire GRB population. The afterglow was observed with swift/UVOT and swift/XRT and evidence of a jet break around 1.5 ks after the burst has been reported in the literature, implying that after this break the optical and X-ray light curve should fade with the same decay slope. As noted by several authors, the post-break decay slope seen in the UVOT data is much shallower than the steep decay in the X-ray band, pointing to an excess of optical flux at late times. We reduced and analyzed new afterglow light-curve data obtained with the multichannel imager GROND. Based on the densely sampled data set obtained with GROND, we find that the optical afterglow of GRB 090510 did indeed enter a steep decay phase starting around 22 ks after the burst. During this time the GROND optical light curve is achromatic, and its slope is identical to the slope of the X-ray data. In combination with the UVOT data this implies that a second break must have occurred in the optical light curve around 22 ks post burst, which, however, has no obvious counterpart in the X-ray band, contradicting the interpretation that this could be another jet break. The GROND data provide the missing piece of evidence that the optical afterglow of GRB 090510 did follow a post-jet break evolution at late times.

قيم البحث

اقرأ أيضاً

The detection of GeV photons from gamma-ray bursts (GRBs) has important consequences for the interpretation and modelling of these most-energetic cosmological explosions. The full exploitation of the high-energy measurements relies, however, on the a ccurate knowledge of the distance to the events. Here we report on the discovery of the afterglow and subsequent redshift determination of GRB 080916C, the first GRB detected by the Fermi Gamma-Ray Space Telescope with high significance detection of photons at >0.1 GeV. Observations were done with 7-channel imager GROND at the 2.2m MPI/ESO telescope, the SIRIUS instrument at the Nagoya-SAAO 1.4m telescope in South Africa, and the GMOS instrument at Gemini-S. The afterglow photometric redshift of z=4.35+-0.15, based on simultaneous 7-filter observations with the Gamma-Ray Optical and Near-infrared Detector (GROND), places GRB 080916C among the top 5% most distant GRBs, and makes it the most energetic GRB known to date. The detection of GeV photons from such a distant event is rather surprising. The observed gamma-ray variability in the prompt emission together with the redshift suggests a lower limit for the Lorentz factor of the ultra-relativistic ejecta of Gamma > 1090. This value rivals any previous measurements of Gamma in GRBs and strengthens the extreme nature of GRB 080916C.
We present the observations of GRB090510 performed by the Fermi Gamma-Ray Space Telescope and the Swift observatory. This is a bright, short burst that shows an extended emission detected in the GeV range. Furthermore, its optical emission initially rises, a feature so far observed only in long bursts, while the X-ray flux shows an initial shallow decrease, followed by a steeper decay. This exceptional behavior enables us to investigate the physical properties of the GRB outflow, poorly known in short bursts. We discuss internal shock and external shock models for the broadband energy emission of this object.
Long-lived high-energy (>100MeV) emission, a common feature of most Fermi-LAT detected gamma-ray burst, is detected up to sim 10^2 s in the short GRB 090510. We study the origin of this long-lived high-energy emission, using broad-band observations i ncluding X-ray and optical data. We confirm that the late > 100 MeV, X-ray and optical emission can be naturally explained via synchrotron emission from an adiabatic forward shock propagating into a homogeneous ambient medium with low number density. The Klein-Nishina effects are found to be significant, and effects due to jet spreading and magnetic field amplification in the shock appear to be required. Under the constraints from the low-energy observations, the adiabatic forward shock synchrotron emission is consistent with the later-time (t>2s) high-energy emission, but falls below the early-time (t < 2s) high energy emission. Thus we argue that an extra high energy component is needed at early times. A standard reverse shock origin is found to be inconsistent with this extra component. Therefore, we attribute the early part of the high-energy emission (t< 2s) to the prompt component, and the long-lived high energy emission (t>2s) to the adiabatic forward shock synchrotron afterglow radiation. This avoids the requirement for an extremely high initial Lorentz factor.
We present post-jet-break textit{HST}, VLA and textit{Chandra} observations of the afterglow of the long $gamma$-ray bursts GRB 160625B (between 69 and 209 days) and GRB 160509A (between 35 and 80 days). We calculate the post-jet-break decline rates of the light curves, and find the afterglow of GRB 160625B inconsistent with a simple $t^{-3/4}$ steepening over the break, expected from the geometric effect of the jet edge entering our line of sight. However, the favored optical post-break decline ($f_{ u} propto t^{-1.96 pm 0.07}$) is also inconsistent with the $f_{ u} propto t^{-p}$ decline (where $p approx 2.3$ from the pre-break light curve), which is expected from exponential lateral expansion of the jet; perhaps suggesting lateral expansion that only affects a fraction of the jet. The post-break decline of GRB 160509A is consistent with both the $t^{-3/4}$ steepening and with $f_{ u} propto t^{-p}$. We also use {sc boxfit} to fit afterglow models to both light curves and find both to be energetically consistent with a millisecond magnetar central engine, although the magnetar parameters need to be extreme (i.e. $E sim 3 times 10^{52}$ erg). Finally, the late-time radio light curves of both afterglows are not reproduced well by {sc boxfit} and are inconsistent with predictions from the standard jet model; instead both are well represented by a single power law decline (roughly $f_{ u} propto t^{-1}$) with no breaks. This requires a highly chromatic jet break ($t_{j,mathrm{radio}} > 10 times t_{j,mathrm{optical}}$) and possibly a two-component jet for both bursts.
GRB 160821B is a short duration gamma-ray burst (GRB) detected and localized by the Neil Gehrels Swift Observatory in the outskirts of a spiral galaxy at z=0.1613, at a projected physical offset of 16 kpc from the galaxys center. We present X-ray, op tical/nIR and radio observations of its counterpart and model them with two distinct components of emission: a standard afterglow, arising from the interaction of the relativistic jet with the surrounding medium, and a kilonova, powered by the radioactive decay of the sub-relativistic ejecta. Broadband modeling of the afterglow data reveals a weak reverse shock propagating backward into the jet, and a likely jet-break at 3.5 d. This is consistent with a structured jet seen slightly off-axis while expanding into a low-density medium. Analysis of the kilonova properties suggests a rapid evolution toward red colors, similar to AT2017gfo, and a low nIR luminosity, possibly due to the presence of a long-lived neutron star. The global properties of the environment, the inferred low mass (M_ej < 0.006 Msun) and velocities (v > 0.05 c) of lanthanide-rich ejecta are consistent with a binary neutron star merger progenitor.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا