ترغب بنشر مسار تعليمي؟ اضغط هنا

Electron-photon scattering mediated by localized plasmons: A quantitative analysis by eigen-response theory

155   0   0.0 ( 0 )
 نشر من قبل Kin Hung Fung
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that the scattering interaction between a high energy electron and a photon can be strongly enhanced by different types of localized plasmons in a non-trivial way. The scattering interaction is predicted by an eigen-response theory, numerically verified by finite-difference-time-domain simulation, and experimentally verified by cathodoluminescence spectroscopy. We find that the scattering interaction associated with dark plasmons can be as strong as that of bright plasmons. Such a strong interaction may offer new opportunities to improve single-plasmon detection and high-resolution characterization techniques for high quality plasmonic materials.

قيم البحث

اقرأ أيضاً

84 - Weiwei Luo , Wei Cai , Wei Wu 2016
Graphene plasmons are of remarkable features that make graphene plasmon elements promising for applications to integrated photonic devices. The fabrication of graphene plasmon components and control over plasmon propagating are of fundamental importa nt. Through near-field plasmon imaging, we demonstrate controllable modifying of the reflection of graphene plasmon at boundaries etched by ion beams. Moreover, by varying ion dose at a proper value, nature like reflection boundary can be obtained. We also investigate the influence of ion beam incident angle on plasmon reflection. To illustrate the application of ion beam etching, a simple graphene wedge-shape plasmon structure is fabricated and performs excellently, proving this technology as a simple and efficient tool for controlling graphene plasmons.
Spontaneous decay of a single photon is a notoriously inefficient process in nature irrespective of the frequency range. We report that a quantum phase-slip fluctuation in high-impedance superconducting waveguides can split a single incident microwav e photon into a large number of lower-energy photons with a near unit probability. The underlying inelastic photon-photon interaction has no analogs in non-linear optics. Instead, the measured decay rates are explained without adjustable parameters in the framework of a new model of a quantum impurity in a Luttinger liquid. Our result connects circuit quantum electrodynamics to critical phenomena in two-dimensional boundary quantum field theories, important in the physics of strongly-correlated systems. The photon lifetime data represents a rare example of verified and useful quantum many-body simulation.
We investigate in a fully quantum-mechanical manner how the many-body excitation spectrum of topological insulators is affected by the presence of long-range Coulomb interactions. In the one-dimensional Su-Schrieffer-Heeger model and its mirror-symme tric variant strongly localized plasmonic excitations are observed which originate from topologically non-trivial single-particle states. These textit{topological plasmons} inherit some of the characteristics of their constituent topological single-particle states, but they are not equally well protected against disorder due to the admixture of non-topological bulk single-particle states in the polarization function. The strength of the effective Coulomb interactions is also shown to have strong effects on the plasmonic modes. Furthermore, we show how external modifications via dielectric screening and applied electric fields with distinct symmetries can be used to study topological plasmons, thus allowing for experimental verification of our atomistic predictions.
249 - O. Mollet , S. Huant , G. Dantelle 2012
We address the issue of the second-order coherence of single surface plasmons launched by a quantum source of light into extended gold films. The quantum source of light is made of a scanning fluorescent nanodiamond hosting five nitrogen-vacancy (NV) color centers. By using a specially designed microscopy that combines near-field optics with far-field leakage-radiation microscopy in the Fourier space and adapted spatial filtering, we find that the quantum statistics of the initial source of light is preserved after conversion to surface plasmons and propagation along the polycrystalline gold film.
The interaction of optical and acoustic waves via stimulated Brillouin scattering (SBS) has recently reached on-chip platforms, which has opened new fields of applications ranging from integrated microwave photonics and on-chip narrow-linewidth laser s, to phonon-based optical delay and signal processing schemes. Since SBS is an effect that scales exponentially with interaction length, on-chip implementation on a short length scale is challenging, requiring carefully designed waveguides with optimized opto-acoustic overlap. In this work, we use the principle of Brillouin optical correlation domain analysis (BOCDA) to locally measure the SBS spectrum with high spatial resolution of 800 {mu}m and perform a distributed measurement of the Brillouin spectrum along a spiral waveguide in a photonic integrated circuit (PIC). This approach gives access to local opto-acoustic properties of the waveguides, including the Brillouin frequency shift (BFS) and linewidth, essential information for the further development of high quality photonic-phononic waveguides for SBS applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا