ترغب بنشر مسار تعليمي؟ اضغط هنا

Orbital Characters Determined from Fermi Surface Intensity Patterns using Angle-Resolved Photoemission Spectroscopy

143   0   0.0 ( 0 )
 نشر من قبل Pierre Richard
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In order to determine the orbital characters on the various Fermi surface pockets of the Fe-based superconductors Ba$_{0.6}$K$_{0.4}$Fe$_{2}$As$_{2}$ and FeSe$_{0.45}$Te$_{0.55}$, we introduce a method to calculate photoemission matrix elements. We compare our simulations to experimental data obtained with various experimental configurations of beam orientation and light polarization. We show that the photoemission intensity patterns revealed from angle-resolved photoemission spectroscopy measurements of Fermi surface mappings and energy-momentum plots along high-symmetry lines exhibit asymmetries carrying precious information on the nature of the states probed, information that is destroyed after the data symmetrization process often performed in the analysis of angle-resolved photoemission spectroscopy data. Our simulations are consistent with Fermi surfaces originating mainly from the $d_{xy}$, $d_{xz}$ and $d_{yz}$ orbitals in these materials.



قيم البحث

اقرأ أيضاً

From a combination of high resolution angle-resolved photoemission spectroscopy and density functional calculations, we show that BaFe2As2 possesses essentially two-dimensional electronic states, with a strong change of orbital character of two of th e Gamma-centered Fermi surfaces as a function of kz. Upon Co doping, the electronic states in the vicinity of the Fermi level take on increasingly three-dimensional character. Both the orbital variation with kz and the more three-dimensional nature of the doped compounds have important consequences for the nesting conditions and thus possibly also for the appearance of antiferromagnetic and superconducting phases.
High resolution angle-resolved photoemission measurements have been carried out on (Sr,K)Fe$_2$As$_2$ superconductor (Tc=21 K). Three hole-like Fermi surface sheets are clearly resolved for the first time around the Gamma point. The overall electroni c structure shows significant difference from the band structure calculations. Qualitative agreement between the measured and calculated band structure is realized by assuming a chemical potential shift of -0.2 eV. The obvious band renormalization suggests the importance of electron correlation in understanding the electronic structure of the Fe-based compounds.
We carried out high resolution angle-resolved photoemission measurements on the electronic structure and superconducting gap of K_0.68Fe_1.79Se_2 (T_c=32 K) and (Tl_0.45K_0.34)Fe_1.84Se_2 (T_c=28 K) superconductors. In addition to the electron-like F ermi surface near M(pi,pi), two electron-like Fermi pockets are revealed around the zone center Gamma(0,0) in K0.68Fe1.79Se_2. This observation makes the Fermi surface topology of K_0.68Fe_1.79Se_2 consistent with that of (Tl,Rb)_xFe_{2-y}Se_2 and (Tl,K)_xFe_{2-y}Se_2 compounds. A nearly isotropic superconducting gap (Delta) is observed along the electron-like Fermi pocket near the M point in K_0.68Fe_1.79Se_2 (Deltasim 9 meV) and (Tl_0.45K_0.34)Fe_1.84Se_2 (Deltasim 8 meV). The establishment of a universal picture on the Fermi surface topology and superconducting gap in the A_xFe_2-ySe_2 (A=K, Tl, Cs, Rb and etc.) superconductors will provide important information in understanding the superconductivity mechanism of the iron-based superconductors.
Here we apply high resolution angle-resolved photoemission spectroscopy (ARPES) using a wide excitation energy range to probe the electronic structure and the Fermi surface topology of the Ba1-xKxFe2As2 (Tc = 32 K) superconductor. We find significant deviations in the low energy band structure from that predicted in calculations. A set of Fermi surface sheets with unexpected topology is detected at the Brillouin zone boundary. At the X-symmetry point the Fermi surface is formed by a shallow electron-like pocket surrounded by four hole-like pockets elongated in G-X and G-Y directions.
181 - L. X. Yang , B. P. Xie , Y. Zhang 2010
The electronic structure of LaOFeAs, a parent compound of iron-arsenic superconductors, is studied by angleresolved photoemission spectroscopy. By examining its dependence on photon energy, polarization, sodium dosing and the counting of Fermi surfac e volume, both the bulk and the surface contributions are identified. We find that a bulk band moves toward high binding energies below structural transition, and shifts smoothly across the spin density wave transition by about 25 meV. Our data suggest the band reconstruction may play a crucial role in the spin density wave transition, and the structural transition is driven by the short range magnetic order. For the surface states, both the LaO-terminated and FeAs-terminated components are revealed. Certain small band shifts are verified for the FeAs-terminated surface states in the spin density wave state, which is a reflection of the bulk electronic structure reconstruction. Moreover, sharp quasiparticle peaks quickly rise at low temperatures, indicating of drastic reduction of the scattering rate. A kink structure in one of the surface band is shown to be possibly related to the electron-phonon interactions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا