ﻻ يوجد ملخص باللغة العربية
In order to determine the orbital characters on the various Fermi surface pockets of the Fe-based superconductors Ba$_{0.6}$K$_{0.4}$Fe$_{2}$As$_{2}$ and FeSe$_{0.45}$Te$_{0.55}$, we introduce a method to calculate photoemission matrix elements. We compare our simulations to experimental data obtained with various experimental configurations of beam orientation and light polarization. We show that the photoemission intensity patterns revealed from angle-resolved photoemission spectroscopy measurements of Fermi surface mappings and energy-momentum plots along high-symmetry lines exhibit asymmetries carrying precious information on the nature of the states probed, information that is destroyed after the data symmetrization process often performed in the analysis of angle-resolved photoemission spectroscopy data. Our simulations are consistent with Fermi surfaces originating mainly from the $d_{xy}$, $d_{xz}$ and $d_{yz}$ orbitals in these materials.
From a combination of high resolution angle-resolved photoemission spectroscopy and density functional calculations, we show that BaFe2As2 possesses essentially two-dimensional electronic states, with a strong change of orbital character of two of th
High resolution angle-resolved photoemission measurements have been carried out on (Sr,K)Fe$_2$As$_2$ superconductor (Tc=21 K). Three hole-like Fermi surface sheets are clearly resolved for the first time around the Gamma point. The overall electroni
We carried out high resolution angle-resolved photoemission measurements on the electronic structure and superconducting gap of K_0.68Fe_1.79Se_2 (T_c=32 K) and (Tl_0.45K_0.34)Fe_1.84Se_2 (T_c=28 K) superconductors. In addition to the electron-like F
Here we apply high resolution angle-resolved photoemission spectroscopy (ARPES) using a wide excitation energy range to probe the electronic structure and the Fermi surface topology of the Ba1-xKxFe2As2 (Tc = 32 K) superconductor. We find significant
The electronic structure of LaOFeAs, a parent compound of iron-arsenic superconductors, is studied by angleresolved photoemission spectroscopy. By examining its dependence on photon energy, polarization, sodium dosing and the counting of Fermi surfac