ترغب بنشر مسار تعليمي؟ اضغط هنا

Weak ferrimagnetism and multiple magnetization reversal in {alpha}-Cr3(PO4)2

32   0   0.0 ( 0 )
 نشر من قبل Alexander Vasiliev
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The chromium(II) orthophosphate {alpha}-Cr3(PO4)2 is a weak ferrimagnet with the Curie temperature TC = 29 K confirmed by a lambda-type peak in specific heat. Dominant antiferromagnetic interactions in this system are characterized by the Weiss temperature {Theta} = - 96 K, indicating an intermediate frustration ratio |{Theta}|/TC ~ 3. In its magnetically ordered states {alpha}-Cr3(PO4)2 exhibits a remarkable sequence of temperature-induced magnetization reversals sensitive to the protocol of measurements, i.e. either field-cooled or zero-field-cooled regimes. The reduction of the effective magnetic moment 4.5 {mu}B/Cr2+, as compared to the spin-only moment 4.9 {mu}B/Cr2+, cannot be ascribed to the occurence of the low-spin state in any crystallographic site of the Jahn-Teller active 3d4 Cr2+ ions. X-ray absorption spectra at the K-edge indicate divalent chromium and unravel the high-spin state of these ions at the L2,3-edges. Weak ferrimagnetism and multiple magnetization reversal phenomena seen in this compound could be ascribed to incomplete cancellation and distortion of partial spontaneous magnetization functions of Cr2+ in its six crystallographically inequivalent positions.

قيم البحث

اقرأ أيضاً

110 - You Lai , Liqin Ke , Jiaqiang Yan 2021
MnBi$_2$Te$_4$ (MBT) materials are promising antiferromagnetic topological insulators where field driven ferromagnetism is predicted to cause a transition between axion insulator and Weyl semimetallic states. However, the presence of antiferromagneti c coupling between Mn/Bi antisite defects and the main Mn layer can reduce the low-field magnetization, and it has been shown that such defects are more prevalent in the structurally identical trivial magnetic insulator MnSb$_2$Te$_4$ (MST). We use high-field magnetization measurements to show that the magnetization of MBT and MST occur in stages and full saturation requires fields of~$sim$~60 Tesla. As a consequence, the low-field magnetization plateau state in MBT, where many determinations of quantum anomalous Hall state are studied, actually consists of ferrimagnetic septuple blocks containing both a uniform and staggered magnetization component.
Among the magnetostrictive alloys the one formed of iron and gallium (called Galfenol from its U.S. Office of Naval Research discoverers in the late 90s) is attractive for its low hysteresis, good tensile stress, good machinability and its rare-earth free composition. One of its applications is its association with a piezoelectric material to form a extrinsic multiferroic composite as an alternative to the rare room temperature intrinsic multiferroics such as BiFeO$_3$. This study focuses on thin Fe$_{0.81}$Ga$_{0.19}$ films of thickness 5, 10, 20 and 60 nm deposited by sputtering onto glass substrates. Magnetization reversal study reveals a well-defined symmetry with two principal directions independent of the thickness. The magnetic signature of this magnetic anisotropy decreases with increasing FeGa thickness due to an increase of the non-preferential polycrystalline arrangement, as revealed by transmission electron microscopy (TEM) observations. Thus when magnetic field is applied along these specific directions, magnetization reversal is mainly coherent for the thinnest sample as seen from the transverse magnetization cycles. Magnetostriction coefficient reaches 20 ppm for the 5 nm film and decreases for thicker samples, where polycrystalline part with non-preferential orientation prevails.
Optical interconnect has emerged as the front-runner to replace electrical interconnect especially for off-chip communication. However, a major drawback with optical interconnects is the need for photodetectors and amplifiers at the receiver, impleme nted usually by direct bandgap semiconductors and analog CMOS circuits, leading to large energy consumption and slow operating time. In this article, we propose a new optical interconnect architecture that uses a magnetic tunnel junction (MTJ) at the receiver side that is switched by femtosecond laser pulses. The state of the MTJ can be sensed using simple digital CMOS latches, resulting in significant improvement in energy consumption. Moreover, magnetization in the MTJ can be switched on the picoseconds time-scale and our design can operate at a speed of 5 Gbits/sec for a single link.
In spite of both technical and fundamental importance, reversal of a macroscopic magnetization by an electric field (E) has been limitedly realized and remains as one of great challenges. Here, we report the realization of modulation and reversal of large magnetization (M) by E in a multiferroic crystal Ba0.5Sr1.5Zn2(Fe0.92Al0.08)12O22, in which a transverse conical spin state exhibits a remanent M and electric polarization below ~150 K. Upon sweeping E between +- 2 MV/m, M is quasi-linearly varied between +- 2 {mu}B/f.u., resulting in the M reversal. Moreover, the remanent M shows non-volatile changes of {Delta}M = +- 0.15 {mu}B/f.u., depending on the history of the applied electric fields. The large modulation and the non-volatile two-states of M at zero magnetic field are observable up to ~150 K where the transverse conical spin state is stabilized. Nuclear magnetic resonance measurements provide microscopic evidences that the electric field and the magnetic field play an equivalent role, rendering the volume of magnetic domains change accompanied by the domain wall motion. The present findings point to a new pathway for realizing the large magnetization reversal by electric fields at fairly high temperatures.
298 - W.-T. Lee 2001
We have shown that polarized neutron reflectometry can determine in a model-free way not only the mean magnetization of a ferromagnetic thin film at any point of a hysteresis cycle, but also the mean square dispersion of the magnetization vectors of its lateral domains. This technique is applied to elucidate the mechanism of the magnetization reversal of an exchange-biased Co/CoO bilayer. The reversal process above the blocking temperature is governed by uniaxial domain switching, while below the blocking temperature the reversal of magnetization for the trained sample takes place with substantial domain rotation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا