ترغب بنشر مسار تعليمي؟ اضغط هنا

Discovery of the benchmark metal poor T8 dwarf BD+01 2920B

84   0   0.0 ( 0 )
 نشر من قبل David J. Pinfield
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have searched the WISE first data release for widely separated (<10,000AU) late T dwarf companions to Hipparcos and Gliese stars. We have discovered a new binary system containing a K-band suppressed T8p dwarf WISEP J1423+0116 and the mildly metal poor ([Fe/H]=-0.38+-0.06) primary BD+01 2920 (Hip 70319), a G1 dwarf at a distance of 17.2pc. This new benchmark has Teff=680+-55K and a mass of 20-50 Mjup. Its spectral properties are well modelled except for known discrepancies in the Y and K bands. Based on the well determined metallicity of its companion, the properties of BD+01 2920B imply that the currently known T dwarfs are dominated by young low-mass objects. We also present an accurate proper motion for the T8.5 dwarf WISEP J075003.84+272544.8.



قيم البحث

اقرأ أيضاً

72 - Wako Aoki 2015
Molecular absorption lines of OH (99 lines) and CH (105 lines) are measured for the carbon-enhanced metal-poor star BD+44 493 with [Fe/H]=-3.8. The abundances of oxygen and carbon determined from individual lines based on an 1D-LTE analysis exhibit s ignificant dependence on excitation potentials of the lines; d log e/d chi ~ -0.15 - -0.2 dex/eV, where e and chi are elemental abundances from individual spectral lines and their excitation potentials, respectively. The dependence is not explained by the uncertainties of stellar parameters, but suggests that the atmosphere of this object possesses a cool layer that is not reproduced by the 1D model atmosphere. This result agrees with the predictions by 3D model calculations. Although absorption lines of neutral iron exhibit similar trend, it is much weaker than found in molecular lines and that predicted by 3D LTE models.
124 - H. Ito , W. Aoki , T.C. Beers 2013
We present detailed chemical abundances for the bright carbon-enhanced metal-poor (CEMP) star BD+44 493, previously reported on by Ito et al. Our measurements confirm that BD+44 493 is an extremely metal-poor ([Fe/H]=-3.8) subgiant star with excesses of carbon and oxygen. No significant excesses are found for nitrogen and neutron-capture elements (the latter of which place it in the CEMP-no class of stars). Other elements that we measure exhibit abundance patterns that are typical for non-CEMP extremely metal-poor stars. No evidence for variations of radial velocity have been found for this star. These results strongly suggest that the carbon enhancement in BD+44 493 is unlikely to have been produced by a companion asymptotic giant-branch star and transferred to the presently observed star, nor by pollution of its natal molecular cloud by rapidly-rotating, massive, mega metal-poor ([Fe/H] < -6.0) stars. A more likely possibility is that this star formed from gas polluted by the elements produced in a faint supernova, which underwent mixing and fallback, and only ejected small amounts of elements of metals beyond the lighter elements. The Li abundance of BD+44 493 (A(Li)=log(Li/H)+12=1.0) is lower than the Spite plateau value, as found in other metal-poor subgiants. The upper limit on Be abundance (A(Be)=log(Be/H)+12<-1.8) is as low as those found for stars with similarly extremely-low metallicity, indicating that the progenitors of carbon- (and oxygen-) enhanced stars are not significant sources of Be, or that Be is depleted in metal-poor subgiants with effective temperatures of ~5400K.
We report the discovery of two Mira variable stars (Miras) toward the Sextans dwarf spheroidal (dSph) galaxy. We performed optical long-term monitoring observations for two red stars in the Sextans dSph. The light curves of both stars in the $I_{rm c }$ band show large-amplitude (3.7 and 0.9 mag) and long-period ($326pm 15$ and $122pm 5$ days) variations, suggesting that they are Miras. We combine our own infrared data with previously published data to estimate the mean infrared magnitudes. The distances obtained from the period-luminosity relation of the Miras ($75.3^{+12.8}_{-10.9}$ and $79.8^{+11.5}_{-9.9}$ kpc, respectively), together with the radial velocities available, support memberships of the Sextans dSph ($90.0pm 10.0$ kpc). These are the first Miras found in a stellar system with a metallicity as low as ${rm [Fe/H]sim -1.9}$, than any other known system with Miras.
Benchmark stars are crucial as validating standards for current as well as future large stellar surveys of the Milky Way. However, the number of suitable metal-poor benchmarks is currently limited. We aim to construct a new set of metal-poor benchmar ks, based on reliable interferometric effective temperature ($T_text{eff}$) determinations and a homogeneous analysis with a desired precision of $1%$ in $T_text{eff}$. We observed ten late-type metal-poor dwarf and giants: HD2665, HD6755, HD6833, HD103095, HD122563, HD127243, HD140283, HD175305, HD221170, and HD224930. Only three of the ten stars (HD103095, HD122563, and HD140283) have previously been used as benchmarks. For the observations, we used the high angular resolution optical interferometric instrument PAVO at the CHARA array. We modelled angular diameters using 3D limb darkening models and determined $T_text{eff}$ directly from the Stefan-Boltzmann relation, with an iterative procedure to interpolate over tables of bolometric corrections. Surface gravities ($log(g)$) were estimated from comparisons to Dartmouth stellar evolution model tracks. We collected spectroscopic observations from the ELODIE and FIES spectrographs and estimated metallicities ($mathrm{[Fe/H]}$) from a 1D non-LTE abundance analysis of unblended lines of neutral and singly ionized iron. We inferred $T_text{eff}$ to better than $1%$ for five of the stars (HD103095, HD122563, HD127243, HD140283, and HD224930). The $T_text{eff}$ of the other five stars are reliable to between $2-3%$; the higher uncertainty on the $T_text{eff}$ for those stars is mainly due to their having a larger uncertainty in the bolometric fluxes. We also determined $log(g)$ and $mathrm{[Fe/H]}$ with median uncertainties of $0.03,mathrm{dex}$ and $0.09,mathrm{dex}$, respectively. These ten stars can, therefore, be adopted as a new, reliable set of metal-poor benchmarks.
We present chemical abundance measurements of three stars in the ultra-faint dwarf galaxy Horologium I, a Milky Way satellite discovered by the Dark Energy Survey. Using high resolution spectroscopic observations we measure the metallicity of the thr ee stars as well as abundance ratios of several $alpha$-elements, iron-peak elements, and neutron-capture elements. The abundance pattern is relatively consistent among all three stars, which have a low average metallicity of [Fe/H] $sim -2.6$ and are not $alpha$-enhanced ([$alpha$/Fe] $sim 0.0$). This result is unexpected when compared to other low-metallicity stars in the Galactic halo and other ultra-faint dwarfs and hints at an entirely different mechanism for the enrichment of Hor I compared to other satellites. We discuss possible scenarios that could lead to this observed nucleosynthetic signature including extended star formation, a Population III supernova, and a possible association with the Large Magellanic Cloud.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا