ترغب بنشر مسار تعليمي؟ اضغط هنا

Complex Faraday depth structure of Active Galactic Nuclei as revealed by broadband radio polarimetry

181   0   0.0 ( 0 )
 نشر من قبل Shane O'Sullivan P
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a detailed study of the Faraday depth structure of four bright (> 1 Jy), strongly polarized, unresolved, radio-loud quasars. The Australia Telescope Compact Array (ATCA) was used to observe these sources with 2 GHz of instantaneous bandwidth from 1.1 to 3.1 GHz. This allowed us to spectrally resolve the polarization structure of spatially unresolved radio sources, and by fitting various Faraday rotation models to the data, we conclusively demonstrate that two of the sources cannot be described by a simple rotation measure (RM) component modified by depolarization from a foreground Faraday screen. Our results have important implications for using background extragalactic radio sources as probes of the Galactic and intergalactic magneto-ionic media as we show how RM estimations from narrow-bandwidth observations can give erroneous results in the presence of multiple interfering Faraday components. We postulate that the additional RM components arise from polarized structure in the compact inner regions of the radio source itself and not from polarized emission from Galactic or intergalactic foreground regions. We further suggest that this may contribute significantly to any RM time-variability seen in RM studies on these angular scales. Follow-up, high-sensitivity VLBI observations of these sources will directly test our predictions.



قيم البحث

اقرأ أيضاً

We investigate the previously proposed possibility that multi-epoch broadband polarimetry could act as a complement or limited proxy for VLBI observations of blazars, in that the number of polarised emission components in the jet, and some of their p roperties and those of the foreground environment, might be inferred from the objects time-varying 1D Faraday depth spectrum (FDS) alone. We report on a pilot-scale experiment designed to establish the basic plausibility and utility of this idea. We analyse temporal changes in the complex polarisation spectra of nine spatially unresolved (at arcsecond scales) blazars in two epochs separated by $sim$5 years, using data taken with the Australia Telescope Compact Array. The data allow for precise modelling, and we demonstrate that all objects in our sample show changes in their polarisation spectrum that cannot be accounted for by uncertainties in calibration or observational effects. By associating polarised emission components across epochs, we infer changes in their number, intrinsic fractional polarisation, intrinsic polarisation angle, rotation measure, and depolarisation characteristics. We attribute these changes to evolution in the structure of the blazar jets, most likely located at distances of up to tens of parsecs from the central active galactic nuclei. Our results suggest that continued work in this area is warranted; in particular, it will be important to determine the frequency ranges and temporal cadence most useful for scientifically exploiting the effects.
168 - Makoto Kishimoto 2010
We are now exploring the inner region of Type 1 active galactic nuclei (AGNs) with the Keck interferometer in the near-infrared. Adding to the four targets previously studied, we report measurements of the K-band (2.2 um) visibilities for four more t argets, namely AKN120, IC4329A, Mrk6, and the radio-loud QSO 3C273 at z=0.158. The observed visibilities are quite high for all the targets, which we interpret as an indication of the partial resolution of the dust sublimation region. The effective ring radii derived from the observed visibilities scale approximately with L^1/2, where L is the AGN luminosity. Comparing the radii with those from independent optical-infrared reverberation measurements, these data support our previous claim that the interferometric ring radius is either roughly equal to or slightly larger than the reverberation radius. We interpret the ratio of these two radii for a given L as an approximate probe of the radial distribution of the inner accreting material. We show tentative evidence that this inner radial structure might be closely related to the radio-loudness of the central engine. Finally, we re-observed the brightest Seyfert 1 galaxy NGC4151. Its marginally higher visibility at a shorter projected baseline, compared to our previous measurements obtained one year before, further supports the partial resolution of the inner structure. We did not detect any significant change in the implied emission size when the K-band flux was brightened by a factor of 1.5 over a time interval of one year.
216 - G. Orosz , S. Frey 2013
Context. It will soon become possible to directly link the most accurate radio reference frame with the Gaia optical reference frame using many common extragalactic objects. It is important to know the level of coincidence between the radio and optic al positions of compact active galactic nuclei (AGN). Aims. Using the best catalogues available at present, we investigate how many AGN with significantly large optical-radio positional offsets exist as well as the possible causes of these offsets. Methods. We performed a case study by finding optical counterparts to the International Celestial Reference Frame (ICRF2) radio sources in the Sloan Digital Sky Survey (SDSS) Data Release 9 (DR9). The ICRF2 catalogue was used as a reference because the radio positions determined by Very Long Baseline Interferometry (VLBI) observations are about two orders of magnitude more accurate than the optical positions. Results. We find 1297 objects in common for ICRF2 and SDSS DR9. Statistical analysis of the optical-radio differences verifies that the SDSS DR9 positions are accurate to ~55 mas in both coordinates, with no systematic offset with respect to ICRF2. We find 51 sources (~4% of the sample) for which the positional offset exceeds 170 mas (~3{sigma}). Astrophysical explanations must exist for most of these outliers. There are 3 known strong gravitational lenses among them. Dual AGN or recoiling supermassive black holes may also be possible. Conclusions. The most accurate Gaia-VLBI reference frame link will require a careful selection of a common set of objects by eliminating the outliers. On the other hand, the significant optical-radio positional non-coincidences may offer a new tool for finding e.g. gravitational lenses or dual AGN candidates. Detailed follow-up radio interferometric and optical spectroscopic observations are encouraged to investigate the outlier sources found in this study.
We present a panoptic view of the stellar structure in the Galactic disks outer reaches commonly known as the Monoceros Ring, based on data from Pan-STARRS1. These observations clearly show the large extent of the stellar overdensities on both sides of the Galactic disk, extending between b = -25 and b = +35 degrees and covering over 130 degrees in Galactic longitude. The structure exhibits a complex morphology with both stream-like features and a sharp edge to the structure in both the north and the south. We compare this map to mock observations of two published simulations aimed at explaining such structures in the outer stellar disk, one postulating an origin as a tidal stream and the other demonstrating a scenario where the disk is strongly distorted by the accretion of a satellite. These morphological comparisons of simulations can link formation scenarios to observed structures, such as demonstrating that the distorted-disk model can produce thin density features resembling tidal streams. Although neither model produces perfect agreement with the observations--the tidal stream predicts material at larger distances which is not detected while in the distorted disk model the midplane is warped to an excessive degree--future tuning of the models to accommodate these latest data may yield better agreement.
We use photometric and spectroscopic infrared observations obtained with the Spitzer Space Telescope of 12 radio-loud active galactic nuclei (AGN) to investigate the dust geometry. Our approach is to look at the change of the infrared spectral energy distribution (SED) and the strength of the 10 micron silicate feature with jet viewing angle. We find that (i) a combination of three or four blackbodies fits well the infrared SED; (ii) the sources viewed closer to the jet axis appear to have stronger warm (~300 - 800 K) and cold (~150 - 250 K) dust emissions relative to the hot component; and (iii) the silicate features are always in emission and strongly redshifted. We test clumpy torus models and find that (i) they approximate well the mid-infrared part of the SED, but significantly underpredict the fluxes at both near- and far-infrared wavelengths; (ii) they can constrain the dust composition (in our case to that of the standard interstellar medium); (iii) they require relatively large (~10%-20% the speed of light) redward displacements; and (iv) they give robust total mass estimates, but are insensitive to the assumed geometry.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا