ﻻ يوجد ملخص باللغة العربية
Understanding the statistical properties of recurrence intervals of extreme events is crucial to risk assessment and management of complex systems. The probability distributions and correlations of recurrence intervals for many systems have been extensively investigated. However, the impacts of microscopic rules of a complex system on the macroscopic properties of its recurrence intervals are less studied. In this Letter, we adopt an order-driven stock market model to address this issue for stock returns. We find that the distributions of the scaled recurrence intervals of simulated returns have a power law scaling with stretched exponential cutoff and the intervals possess multifractal nature, which are consistent with empirical results. We further investigate the effects of long memory in the directions (or signs) and relative prices of the order flow on the characteristic quantities of these properties. It is found that the long memory in the order directions (Hurst index $H_s$) has a negligible effect on the interval distributions and the multifractal nature. In contrast, the power-law exponent of the interval distribution increases linearly with respect to the Hurst index $H_x$ of the relative prices, and the singularity width of the multifractal nature fluctuates around a constant value when $H_x<0.7$ and then increases with $H_x$. No evident effects of $H_s$ and $H_x$ are found on the long memory of the recurrence intervals. Our results indicate that the nontrivial properties of the recurrence intervals of returns are mainly caused by traders behaviors of persistently placing new orders around the best bid and ask prices.
In this paper, we investigate the cooling-off effect (opposite to the magnet effect) from two aspects. Firstly, from the viewpoint of dynamics, we study the existence of the cooling-off effect by following the dynamical evolution of some financial va
Using more than 6.7 billions of trades, we explore how the tick-by-tick dynamics of limit order books depends on the aggregate actions of large investment funds on a much larger (quarterly) timescale. In particular, we find that the well-established
In financial markets, the order flow, defined as the process assuming value one for buy market orders and minus one for sell market orders, displays a very slowly decaying autocorrelation function. Since orders impact prices, reconciling the persiste
We propose a parametric model for the simulation of limit order books. We assume that limit orders, market orders and cancellations are submitted according to point processes with state-dependent intensities. We propose new functional forms for these
We introduce a Cox-type model for relative intensities of orders flows in a limit order book. The model assumes that all intensities share a common baseline intensity, which may for example represent the global market activity. Parameters can be esti