ترغب بنشر مسار تعليمي؟ اضغط هنا

ORIGAMI: Delineating Halos using Phase-Space Folds

123   0   0.0 ( 0 )
 نشر من قبل Bridget Falck
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the ORIGAMI method of identifying structures, particularly halos, in cosmological N-body simulations. Structure formation can be thought of as the folding of an initially flat three-dimensional manifold in six-dimensional phase space. ORIGAMI finds the outer folds that delineate these structures. Halo particles are identified as those that have undergone shell-crossing along 3 orthogonal axes, providing a dynamical definition of halo regions that is independent of density. ORIGAMI also identifies other morphological structures: particles that have undergone shell-crossing along 2, 1, or 0 orthogonal axes correspond to filaments, walls, and voids respectively. We compare this method to a standard Friends-of-Friends halo-finding algorithm and find that ORIGAMI halos are somewhat larger, more diffuse, and less spherical, though the global properties of ORIGAMI halos are in good agreement with other modern halo-finding algorithms.



قيم البحث

اقرأ أيضاً

154 - Mark C. Neyrinck 2013
Structures like galaxies and filaments of galaxies in the Universe come about from the origami-like folding of an initially flat three-dimensional manifold in 6D phase space. The ORIGAMI method identifies these structures in a cosmological simulation , delineating the structures according to their outer folds. Structure identification is a crucial step in comparing cosmological simulations to observed maps of the Universe. The ORIGAMI definition is objective, dynamical and geometric: filament, wall and void particles are classified according to the number of orthogonal axes along which dark-matter streams have crossed. Here, we briefly review these ideas, and speculate on how ORIGAMI might be useful to find cosmic voids.
We summarize recent developments in the use of spectral methods for analyzing large numbers of orbits in N-body simulations to obtain insights into the global phase space structure of dark matter halos. The fundamental frequencies of oscillation of o rbits can be used to understand the physical mechanism by which the shapes of dark matter halos evolve in response to the growth of central baryonic components. Halos change shape primarily because individual orbits change their shapes adiabatically in response to the growth of a baryonic component, with those at small radii become preferentially rounder. Chaotic scattering of orbits occurs only when the central point mass is very compact and is equally effective for centrophobic long-axis tube orbits as it is for centrophilic box orbits.
198 - Aaron D. Ludlow 2010
We use N-body simulations to investigate the radial dependence of the density and velocity dispersion in cold dark matter (CDM) halos. In particular, we explore how closely Q rho/sigma^3, a surrogate measure of the phase-space density, follows a powe r-law in radius. Our study extends earlier work by considering, in addition to spherically-averaged profiles, local Q-estimates for individual particles, Q_i; profiles based on the ellipsoidal radius dictated by the triaxial structure of the halo, Q_i(r); and by carefully removing substructures in order to focus on the profile of the smooth halo, Q^s. The resulting Q_i^s(r) profiles follow closely a power law near the center, but show a clear upturn from this trend near the virial radius, r_{200}. The location and magnitude of the deviations are in excellent agreement with the predictions from Bertschingers spherical secondary-infall similarity solution. In this model, Q propto r^{-1.875} in the inner, virialized regions, but departures from a power-law occur near r_{200} because of the proximity of this radius to the location of the first shell crossing - the shock radius in the case of a collisional fluid. Particles there have not yet fully virialized, and so Q departs from the inner power-law profile. Our results imply that the power-law nature of $Q$ profiles only applies to the inner regions and cannot be used to predict accurately the structure of CDM halos beyond their characteristic scale radius.
The primordial velocity dispersion of dark matter is small compared to the velocities attained during structure formation. The initial density distribution is close to uniform and it occupies an initial sheet in phase space that is single valued in v elocity space. Because of gravitational forces this three dimensional manifold evolves in phase space without ever tearing, conserving phase-space volume and preserving the connectivity of nearby points. N-body simulations already follow the motion of this sheet in phase space. This fact can be used to extract full fine-grained phase-space-structure information from existing cosmological N-body simulations. Particles are considered as the vertices of an unstructured three dimensional mesh, moving in six dimensional phase-space. On this mesh, mass density and momentum are uniquely defined. We show how to obtain the space density of the fluid, detect caustics, and count the number of streams as well as their individual contributions to any point in configuration-space. We calculate the bulk velocity, local velocity dispersions, and densities from the sheet - all without averaging over control volumes. This gives a wealth of new information about dark matter fluid flow which had previously been thought of as inaccessible to N-body simulations. We outline how this mapping may be used to create new accurate collisionless fluid simulation codes that may be able to overcome the sparse sampling and unphysical two-body effects that plague current N-body techniques.
We have performed a series of numerical experiments to investigate how the primordial thermal velocities of fermionic dark matter particles affect the physical and phase space density profiles of the dark matter haloes into which they collect. The in itial particle velocities induce central cores in both profiles, which can be understood in the framework of phase space density theory. We find that the maximum coarse-grained phase space density of the simulated haloes (computed in 6 dimensional phase space using the EnBid code) is very close to the theoretical fine-grained upper bound, while the pseudo phase space density, Q ~ {rho}/{sigma}^3, overestimates the maximum phase space density by up to an order of magnitude. The density in the inner regions of the simulated haloes is well described by a pseudo-isothermal profile with a core. We have developed a simple model based on this profile which, given the observed surface brightness profile of a galaxy and its central velocity dispersion, accurately predicts its central phase space density. Applying this model to the dwarf spheroidal satellites of the Milky Way yields values close to 0.5 keV for the mass of a hypothetical thermal warm dark matter particle, assuming the satellite haloes have cores produced by warm dark matter free streaming. Such a small value is in conflict with the lower limit of 1.2 keV set by observations of the Lyman-{alpha} forest. Thus, if the Milky Way dwarf spheroidal satellites have cores, these are likely due to baryonic processes associated with the forming galaxy, perhaps of the kind proposed by Navarro, Eke and Frenk and seen in recent simulations of galaxy formation in the cold dark matter model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا