ترغب بنشر مسار تعليمي؟ اضغط هنا

The Cepheid distance to the Local Group Galaxy NGC 6822

167   0   0.0 ( 0 )
 نشر من قبل John Menzies
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent estimates of the Cepheid distance modulus of NGC 6822 differ by 0.18 mag. To investigate this we present new multi-epoch JHKs photometry of classical Cepheids in the central region of NGC 6822 and show that there is a zero-point difference from earlier work. These data together with optical and mid-infrared observations from the literature are used to derive estimates of the distance modulus of NGC 6822. A best value of 23.40 mag is adopted, based on an LMC distance modulus of 18.50 mag. The standard error of this quantity is ~0.05 mag. We show that to derive consistent moduli from Cepheid observations at different wavelengths, it is necessary that the fiducial LMC period-luminosity relations at these wavelengths should refer to the same subsample of stars. Such a set is provided. A distance modulus based on RR Lyrae variables agrees with the Cepheid result.



قيم البحث

اقرأ أيضاً

We derive a distance of $15.8pm0.4$ Mpc to the archetypical Seyfert 1 galaxy NGC 4151 based on the near-infrared Cepheid Period-Luminosity relation and new Hubble Space Telescope multiband imaging. This distance determination, based on measurements o f 35 long-period ($P > 25$d) Cepheids, will support the absolute calibration of the supermassive black hole mass in this system, as well as studies of the dynamics of the feedback or feeding of its active galactic nucleus.
We derive a distance of $D = 16.6 pm 0.3$~Mpc ($mu=31.10pm0.04$~mag) to the archetypal narrow-line Seyfert 1 galaxy NGC 4051 based on Cepheid Period--Luminosity relations and new Hubble Space Telescope multiband imaging. We identify 419 Cepheid candi dates and estimate the distance at both optical and near-infrared wavelengths using subsamples of precisely-photometered variables (123 and 47 in the optical and near-infrared subsamples, respectively). We compare our independent photometric procedures and distance-estimation methods to those used by the SH0ES team and find agreement to 0.01~mag. The distance we obtain suggests an Eddington ratio $dot{m} approx 0.2$ for NGC 4051, typical of narrow-line Seyfert 1 galaxies, unlike the seemingly-odd value implied by previous distance estimates. We derive a peculiar velocity of $-490pm34$~km~s$^{-1}$ for NGC 4051, consistent with the overall motion of the Ursa Major Cluster in which it resides. We also revisit the energetics of the NGC 4051 nucleus, including its outflow and mass accretion rates.
118 - Behnam Javanmardi 2021
The current tension between the direct and the early Universe measurements of the Hubble Constant, $H_0$, requires detailed scrutiny of all the data and methods used in the studies on both sides of the debate. The Cepheids in the type Ia supernova (S NIa) host galaxy NGC 5584 played a key role in the local measurement of $H_0$. The SH0ES project used the observations of this galaxy to derive a relation between Cepheids periods and ratios of their amplitudes in different optical bands of the Hubble Space Telescope (HST), and used these relations to analyse the light curves of the Cepheids in around half of the current sample of local SNIa host galaxies. In this work, we present an independent detailed analysis of the Cepheids in NGC 5584. We employ different tools for our photometric analysis and a completely different method for our light curve analysis, and we do not find a systematic difference between our period and mean magnitude measurements compared to those reported by SH0ES. By adopting a period-luminosity relation calibrated by the Cepheids in the Milky Way, we measure a distance modulus $mu=31.810pm0.047$ (mag) which is in agreement with $mu=31.786pm0.046$ (mag) measured by SH0ES. In addition, the relations we find between periods and amplitude ratios of the Cepheids in NGC 5584 are significantly tighter than those of SH0ES and their potential impact on the direct $H_0$ measurement will be investigated in future studies.
We present a wide-field, high spatial and velocity resolution map of the entire extended HI distribution of the nearby Local Group dwarf galaxy NGC 6822. The observations were obtained with the Parkes single-dish telescope and the Australia Telescope Compact Array in mosaicing mode. NGC 6822 has an extended HI-disk which is shaped by the presence of numerous HI holes and shells, including a supergiant shell, and the effects of tidal interaction, in the form of a tidal arm and an infalling or interacting HI complex. These tidal features are not obvious in lower resolution data, and only the proximity of NGC 6822 enables us to see them clearly. This suggests that the importance of minor interactions in dwarf galaxies may be larger than previously assumed.
We present a comprehensive study of massive young stellar objects (YSOs) in the metal-poor galaxy NGC 6822 using IRAC and MIPS data obtained from the {em Spitzer Space Telescope}. We find over 500 new YSO candidates in seven massive star-formation re gions; these sources were selected using six colour-magnitude cuts. Via spectral energy distribution fitting to the data with YSO radiative transfer models we refine this list, identifying 105 high-confidence and 88 medium-confidence YSO candidates. For these sources we constrain their evolutionary state and estimate their physical properties. The majority of our YSO candidates are massive protostars with an accreting envelope in the initial stages of formation. We fit the mass distribution of the Stage I YSOs with a Kroupa initial mass function and determine a global star-formation rate of 0.039 $M_{odot} yr^{-1}$. This is higher than star-formation rate estimates based on integrated UV fluxes. The new YSO candidates are preferentially located in clusters which correspond to seven active high-mass star-formation regions which are strongly correlated with the 8 and 24 $mu$m emission from PAHs and warm dust. This analysis reveals an embedded high-mass star-formation region, Spitzer I, which hosts the highest number of massive YSO candidates in NGC 6822. The properties of Spitzer I suggest it is younger and more active than the other prominent H,{sc ii} and star-formation regions in the galaxy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا