ﻻ يوجد ملخص باللغة العربية
The evolution of the N=50 gap is analyzed as a function of the occupation of the proton f5/2 and p3/2 orbits. It is based on experimental atomic masses, using three different methods of one or two-neutron separation energies of ground or isomeric states. We show that the effect of correlations, which is maximized at Z=32 could be misleading with respect to the determination of the size of the shell gap, especially when using the method with two-neutron separation energies. From the methods that are the least perturbed by correlations, we estimate the N=50 spherical shell gap in 78Ni. Whether 78Ni would be a rigid spherical or deformed nucleus is discussed in comparison with other nuclei in which similar nucleon-nucleon forces are at play.
We present the state-of-the art shell model calculations in a large model space (pf for protons, fpgd for neutrons), which allow to study simultaneously excitations across the Z=28 and N=50 shell gaps. We explore the region in the vicinity of 78Ni, b
The clustering of nucleons in nuclei is a widespread but elusive phenomenon for study. Here, we wish to highlight the variety of theoretical approaches, and demonstrate how they are mutually supportive and complementary. On the experimental side, we
Atomic masses of the neutron-rich isotopes $^{76-80}$Zn, $^{78-83}$Ga, $^{80-85}Ge, $^{81-87}$As and $^{84-89}$Se have been measured with high precision using the Penning trap mass spectrometer JYFLTRAP at the IGISOL facility. The masses of $^{82,83}
We probe the $N=82$ nuclear shell closure by mass measurements of neutron-rich cadmium isotopes with the ISOLTRAP spectrometer at ISOLDE-CERN. The new mass of $^{132}$Cd offers the first value of the $N=82$, two-neutron shell gap below $Z=50$ and con
Mass measurements of the $^{69}$As, $^{70,71}$Se and $^{71}$Br isotopes, produced via fragmentation of a $^{124}$Xe primary beam at the FRS at GSI, have been performed with the multiple-reflection time-of-flight mass spectrometer (MR-TOF-MS) of the F