ﻻ يوجد ملخص باللغة العربية
The high-pressure melting curve of tantalum (Ta) has been the center of a long-standing controversy. Sound velocities along the Hugoniot curve are expected to help in understanding this issue. To that end, we employed a direct-reverse impact technique and velocity interferometry to determine sound velocities of Ta under shock compression in the 10-110 GPa pressure range. The measured longitudinal sound velocities show an obvious kink at ~60 GPa as a function of shock pressure, while the bulk sound velocities show no discontinuity. Such observation could result from a structural transformation associated with a negligible volume change or an electronic topological transition.
Wehrenberg et. al. [Nature 550 496 (2017)] used ultrafast in situ x-ray diffraction at the LCLS x-ray free-electron laser facility to measure large lattice rotations resulting from slip and deformation twinning in shock-compressed laser-driven [110]
Ultrafast acoustics measurements on liquid mercury have been performed at high pressure and temperature in diamond anvils cell using picosecond acoustic interferometry. We extract the density of mercury from adiabatic sound velocities using a numeric
Boron carbide is a ceramic material with unique properties widely used in numerous, including armor, applications. Its mechanical properties, mechanism of compression, and limits of stability are of both scientific and practical value. Here, we repor
We present a combined theoretical and experimental study of the high-pressure behavior of thallium. X-ray diffraction experiments have been carried out at room temperature up to 125 GPa using diamond-anvil cells, nearly doubling the pressure range of
We derive expressions for shock formation based on the local curvature of the flow characteristics during dynamic compression. Given a specific ramp adiabat, calculated for instance from the equation of state for a substance, the ideal nonlinear shap