ﻻ يوجد ملخص باللغة العربية
With the exponential growth in the world population and the constant increase in human mobility, the danger of outbreaks of epidemics is rising. Especially in high density urban areas such as public transport and transfer points, where people come in close proximity of each other, we observe a dramatic increase in the transmission of airborne viruses and related pathogens. It is essential to have a good understanding of the `transmission highways in such areas, in order to prevent or to predict the spreading of infectious diseases. The approach we take is to combine as much information as is possible, from all relevant sources and integrate this in a simulation environment that allows for scenario testing and decision support. In this paper we lay out a novel approach to study Urban Airborne Disease spreading by combining traffic information, with geo-spatial data, infection dynamics and spreading characteristics.
There are often multiple diseases with cross immunity competing for vaccination resources. Here we investigate the optimal vaccination program in a two-layer Susceptible-Infected-Removed (SIR) model, where two diseases with cross immunity spread in t
City traffic is a dynamic system of enormous complexity. Modeling and predicting city traffic flow remains to be a challenge task and the main difficulties are how to specify the supply and demands and how to parameterize the model. In this paper we
A well-known characteristic of pandemics such as COVID-19 is the high level of transmission heterogeneity in the infection spread: not all infected individuals spread the disease at the same rate and some individuals (superspreaders) are responsible
Infectious diseases are caused by pathogenic microorganisms and can spread through different ways. Mathematical models and computational simulation have been used extensively to investigate the transmission and spread of infectious diseases. In other
We develop a mathematical framework to study the economic impact of infectious diseases by integrating epidemiological dynamics with a kinetic model of wealth exchange. The multi-agent description leads to study the evolution over time of a system of