ترغب بنشر مسار تعليمي؟ اضغط هنا

Interplay between chiral and axial symmetries in a SU(2) Nambu--Jona-Lasinio Model with the Polyakov loop

67   0   0.0 ( 0 )
 نشر من قبل Pedro Fernando Simoes Costa
 تاريخ النشر 2011
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider a two flavor Polyakov--Nambu--Jona-Lasinio (PNJL) model where the Lagrangian includes an interaction term that explicitly breaks the U$_A(1)$ anomaly. At finite temperature, the restoration of chiral and axial symmetries, signaled by the behavior of several observables, is investigated. We compare the effects of two regularizations at finite temperature, one of them, that allows high momentum quarks states, leading to the full recovery of chiral symmetry. From the analysis of the behavior of the topological susceptibility and of the mesonic masses of the axial partners, it is found in the SU(2) model that, unlike the SU(3) results, the recovery of the axial symmetry is not a consequence of the full recovery of the chiral symmetry. Thus, one needs to use an additional idea, by means of a temperature dependence of the anomaly coefficient, that simulates instanton suppression effects.

قيم البحث

اقرأ أيضاً

111 - H. Abuki , R. Anglani , R. Gatto 2008
We study the interplay between the chiral and the deconfinement transitions, both at high temperature and high quark chemical potential, by a non local Nambu-Jona Lasinio model with the Polyakov loop in the mean field approximation and requiring neut rality of the ground state. We consider three forms of the effective potential of the Polyakov loop: two of them with a fixed deconfinement scale, cases I and II, and the third one with a $mu$ dependent scale, case III. In the cases I and II, at high chemical potential $mu$ and low temperature $T$ the main contribution to the free energy is due to the Z(3)-neutral three-quark states, mimicking the quarkyonic phase of the large $N_c$ phase diagram. On the other hand in the case III the quarkyonic window is shrunk to a small region. Finally we comment on the relations of these results to lattice studies and on possible common prospects. We also briefly comment on the coexistence of quarkyonic and color superconductive phases.
83 - Kenji Fukushima 2008
We present extensive studies on hot and dense quark matter with two light and one heavy flavors in the Nambu--Jona-Lasinio model with the Polyakov loop (so-called PNJL model). First we discuss prescription dependence in choosing the Polyakov loop eff ective potential and propose a simple and rather sensible ansatz. We look over quantitative comparison to the lattice measurement to confirm that the model captures thermodynamic properties correctly. We then analyze the phase structure with changing the temperature, quark chemical potential, quark masses, and coupling constants. We particularly investigate how the effective U_A(1) restoration and the induced vector-channel interaction at finite density would affect the QCD critical point.
We estimate the axion properties i.e. its mass, topological susceptibility and the self-coupling within the framework of Polyakov loop enhanced Nambu-Jona-Lasinio (PNJL) model at finite temperature and quark chemical potential. PNJL model, where quar ks couple simultaneously to the chiral condensate and to a background temporal quantum chromodynamics (QCD) gauge field, includes two important features of QCD phase transition, i.e. deconfinement and chiral symmetry restoration. The Polyakov loop in PNJL model plays an important role near the critical temperature. We have shown significant difference in the axion properties calculated in PNJL model compared to the same obtained using Nambu-Jona-Lasinio (NJL) model. We find that both the mass of the axion and its self-coupling are correlated with the chiral transition as well as the confinement-deconfinement transition. We have also estimated the axion properties at finite chemical potential. Across the QCD transition temperature and/or quark chemical potential axion mass and its self-coupling also changes significantly. Since the PNJL model includes both the fermionic sector and the gauge fields, it can give reliable estimates of the axion properties, i.e. its mass and the self-coupling in a hot and dense QCD medium. We also compare our results with the lattice QCD results whenever available.
Nambu--Jona-Lasinio-type models have been used extensively to study the dynamics of the theory of the strong interaction at finite temperature and quark chemical potential on a phenomenological level. In addition to these studies, which are often per formed under the assumption that the ground state of the theory is homogeneous, searches for the existence of crystalline phases associated with inhomogeneous ground states have attracted a lot of interest in recent years. In this work, we study the Polyakov-loop extended Nambu--Jona-Lasinio model and find that the existence of a crystalline phase is stable against a variation of the parametrization of the underlying Polyakov loop potential. To this end, we adopt two prominent parametrizations. Moreover, we observe that the existence of a quarkyonic phase depends crucially on the parametrization, in particular in the regime of the phase diagram where inhomogeneous chiral condensation is favored.
We explore the phase diagram and the modification of mesonic observables in a hot and dense medium using the (2+1) Polyakov-Nambu-Jona-Lasinio model. We present the phase diagram in the ($T,,mu_B$)-plane, with its isentropic trajectories, paying spec ial attention to the chiral critical end point (CEP). Chiral and deconfinement transitions are examined. The modifications of mesonic observables in the medium are explored as a tool to analyze the effective restoration of chiral symmetry for different regions of the phase diagram. It is shown that the meson masses, namely that of the kaons, change abruptly near the CEP, which can be relevant for its experimental search.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا