ﻻ يوجد ملخص باللغة العربية
The negatively charged nitrogen-vacancy (NV-) center in diamond is an attractive candidate for applications that range from magnetometry to quantum information processing. Here we show that only a fraction of the nitrogen (typically < 0.5 %) incorporated during homoepitaxial diamond growth by Chemical Vapor Deposition (CVD) is in the form of undecorated NV- centers. Furthermore, studies on CVD diamond grown on (110) oriented substrates show a near 100% preferential orientation of NV- centers along only the [111] and [-1-11] directions, rather than the four possible orientations. The results indicate that NV centers grow in as units, as the diamond is deposited, rather than by migration and association of their components. The NV unit of the NVH- is similarly preferentially oriented, but it is not possible to determine whether this defect was formed by H capture at a preferentially aligned NV center or as a complete unit. Reducing the number of NV orientations from 4 orientations to 2 orientations should lead to increased optically-detected magnetic resonance contrast and thus improved magnetic sensitivity in ensemble-based magnetometry.
We show a marked reduction in the emission from nitrogen-vacancy (NV) color centers in single crystal diamond due to exposure of the diamond to hydrogen plasmas ranging from 700{deg}C to 1000{deg}C. Significant fluorescence reduction was observed ben
The photoluminescence of nitrogen-vacancy (NV) centers in diamond nanoparticles exhibits specific properties as compared to NV centers in bulk diamond. For instance large fluctuations of lifetime and brightness from particle to particle have been rep
Nitrogen-vacancy (NV) centers in diamond have attracted a great deal of attention because of their possible use in information processing and electromagnetic sensing technologies. We examined theatomistic generation mechanism for the NV defect aligne
Nanodiamond crystals containing single color centers have been grown by chemical vapor deposition (CVD). The fluorescence from individual crystallites was directly correlated with crystallite size using a combined atomic force and scanning confocal f
Nitrogen-vacancy (NV-) color centers in diamond were created by implantation of 7 keV 15N (I = 1/2) ions into type IIa diamond. Optically detected magnetic resonance was employed to measure the hyperfine coupling of the NV- centers. The hyperfine spe