ترغب بنشر مسار تعليمي؟ اضغط هنا

Explicit Integration of Extremely-Stiff Reaction Networks: Partial Equilibrium Methods

203   0   0.0 ( 0 )
 نشر من قبل Mike Guidry
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In two preceding papers we have shown that, when reaction networks are well-removed from equilibrium, explicit asymptotic and quasi-steady-state approximations can give algebraically-stabilized integration schemes that rival standard implicit methods in accuracy and speed for extremely stiff systems. However, we also showed that these explicit methods remain accurate but are no longer competitive in speed as the network approaches equilibrium. In this paper we analyze this failure and show that it is associated with the presence of fast equilibration timescales that neither asymptotic nor quasi-steady-state approximations are able to remove efficiently from the numerical integration. Based on this understanding, we develop a partial equilibrium method to deal effectively with the approach to equilibrium and show that explicit asymptotic methods, combined with the new partial equilibrium methods, give an integration scheme that plausibly can deal with the stiffest networks, even in the approach to equilibrium, with accuracy and speed competitive with that of implicit methods. Thus we demonstrate that such explicit methods may offer alternatives to implicit integration of even extremely stiff systems, and that these methods may permit integration of much larger networks than have been possible before in a number of fields.



قيم البحث

اقرأ أيضاً

We show that, even for extremely stiff systems, explicit integration may compete in both accuracy and speed with implicit methods if algebraic methods are used to stabilize the numerical integration. The required stabilizing algebra depends on whethe r the system is well-removed from equilibrium or near equilibrium. This paper introduces a quantitative distinction between these two regimes and addresses the former case in depth, presenting explicit asymptotic methods appropriate when the system is extremely stiff but only weakly equilibrated. A second paper examines quasi-steady-state methods as an alternative to asymptotic methods in systems well away from equilibrium and a third paper extends these methods to equilibrium conditions in extremely stiff systems using partial equilibrium methods. All three papers present systematic evidence for timesteps competitive with implicit methods. Because an explicit method can execute a timestep faster than an implicit method, algebraically-stabilized explicit algorithms might permit integration of larger networks than have been feasible before in various disciplines.
150 - M. W. Guidry , J. A. Harris 2011
A preceding paper demonstrated that explicit asymptotic methods generally work much better for extremely stiff reaction networks than has previously been shown in the literature. There we showed that for systems well removed from equilibrium explicit asymptotic methods can rival standard implicit codes in speed and accuracy for solving extremely stiff differential equations. In this paper we continue the investigation of systems well removed from equilibrium by examining quasi-steady-state (QSS) methods as an alternative to asymptotic methods. We show that for systems well removed from equilibrium, QSS methods also can compete with, or even exceed, standard implicit methods in speed, even for extremely stiff networks, and in many cases give somewhat better integration speed than for asymptotic methods. As for asymptotic methods, we will find that QSS methods give correct results, but with non-competitive integration speed as equilibrium is approached. Thus, we shall find that both asymptotic and QSS methods must be supplemented with partial equilibrium methods as equilibrium is approached to remain competitive with implicit methods.
105 - Mike Guidry 2011
In contrast to the prevailing view in the literature, it is shown that even extremely stiff sets of ordinary differential equations may be solved efficiently by explicit methods if limiting algebraic solutions are used to stabilize the numerical inte gration. The stabilizing algebra differs essentially for systems well-removed from equilibrium and those near equilibrium. Explicit asymptotic and quasi-steady-state methods that are appropriate when the system is only weakly equilibrated are examined first. These methods are then extended to the case of close approach to equilibrium through a new implementation of partial equilibrium approximations. Using stringent tests with astrophysical thermonuclear networks, evidence is provided that these methods can deal with the stiffest networks, even in the approach to equilibrium, with accuracy and integration timestepping comparable to that of implicit methods. Because explicit methods can execute a timestep faster and scale more favorably with network size than implicit algorithms, our results suggest that algebraically-stabilized explicit methods might enable integration of larger reaction networks coupled to fluid dynamics than has been feasible previously for a variety of disciplines.
The concept of the limiting step is extended to the asymptotology of multiscale reaction networks. Complete theory for linear networks with well separated reaction rate constants is developed. We present algorithms for explicit approximations of eige nvalues and eigenvectors of kinetic matrix. Accuracy of estimates is proven. Performance of the algorithms is demonstrated on simple examples. Application of algorithms to nonlinear systems is discussed.
289 - S. Singh , S. Sircar 2019
We provide a preliminary comparison of the dispersion properties, specifically the time-amplification factor, the scaled group velocity and the error in the phase speed of four spatiotemporal discretization schemes utilized for solving the one-dimens ional (1D) linear advection diffusion reaction (ADR) equation: (a) An explicit (RK2) temporal integration combined with the Optimal Upwind Compact Scheme (or OUCS3) and the central difference scheme (CD2) for second order spatial discretization, (b) a fully implicit mid-point rule for time integration coupled with the OUCS3 and the Leles compact scheme for first and second order spatial discretization, respectively, (c) An implicit (mid-point rule)-explicit (RK2) or IMEX time integration blended with OUCS3 and Leles compact scheme (where the IMEX time integration follows the same ideology as introduced by Ascher et al.), and (d) the IMEX (mid-point/RK2) time integration melded with the New Combined Compact Difference scheme (or NCCD scheme). Analysis reveal the superior resolution features of the IMEX-NCCD scheme including an enhanced region of neutral stability (a region where the amplification factor is close to one), a diminished region of spurious propagation characteristics (or a region of negative group velocity) and a smaller region of nonzero phase speed error. The dispersion error of these numerical schemes through the role of q-waves is further investigated using the novel error propagation equation for the 1D linear ADR equation. Again, the in silico experiments divulge excellent Dispersion Relation Preservation (DRP) properties of the IMEX-NCCD scheme including minimal dissipation via implicit filtering and negligible unphysical oscillations (or Gibbs phenomena) on coarser grids.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا