ﻻ يوجد ملخص باللغة العربية
The charged particle production in proton-proton collisions is studied with the LHCb detector at a centre-of-mass energy of ${sqrt{s} =7}$TeV in different intervals of pseudorapidity $eta$. The charged particles are reconstructed close to the interaction region in the vertex detector, which provides high reconstruction efficiency in the $eta$ ranges $-2.5<eta<-2.0$ and $2.0<eta<4.5$. The data were taken with a minimum bias trigger, only requiring one or more reconstructed tracks in the vertex detector. By selecting an event sample with at least one track with a transverse momentum greater than 1 GeV/c a hard QCD subsample is investigated. Several event generators are compared with the data; none are able to describe fully the multiplicity distributions or the charged particle density distribution as a function of $eta$. In general, the models underestimate the charged particle production.
Charged particle multiplicities are studied in proton-proton collisions in the forward region at a centre-of-mass energy of $sqrt{s} = 7;$TeV with data collected by the LHCb detector. The forward spectrometer allows access to a kinematic range of $2.
Charged particle multiplicities in proton-proton collisions measured in the LHCb detector at a centre-of-mass energy of $sqrt s$=7 TeV in different windows of pseudorapidity $eta$, in the forward region of the vertex detector are studied by using dif
The TOTEM experiment has measured the charged particle pseudorapidity density dN_{ch}/deta in pp collisions at sqrt{s} = 7 TeV for 5.3<|eta|<6.4 in events with at least one charged particle with transverse momentum above 40 MeV/c in this pseudorapidi
The energy flow created in pp collisions at sqrt(s)=7 TeV is studied within the pseudorapidity range 1.9<eta<4.9 with data collected by the LHCb experiment. The measurements are performed for inclusive minimum-bias interactions, hard scattering proce
Bose-Einstein correlations of same-sign charged pions, produced in proton-proton collisions at a 7 TeV centre-of-mass energy, are studied using a data sample collected by the LHCb experiment. The signature for Bose-Einstein correlations is observed i