ترغب بنشر مسار تعليمي؟ اضغط هنا

Multi-Wavelength Photometric and Polarimetric Observations of the Outburst of 3C 454.3 in Dec. 2009

66   0   0.0 ( 0 )
 نشر من قبل Mahito Sasada Mr.
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In December 2009, the bright blazar, 3C 454.3 exhibited a strong outburst in the optical, X-ray and gamma-ray regions. We performed photometric and polarimetric monitoring of this outburst in the optical and near-infrared bands with TRISPEC and HOWPol attached to the Kanata telescope. We also observed this outburst in the infrared band with AKARI, and the radio band with the 32-m radio telescope of Yamaguchi University. The object was in an active state from JD 2455055 to 2455159. It was 1.3 mag brighter than its quiescent state before JD 2455055 in the optical band. After the end of the active state in JD 2455159, a prominent outburst was observed in all wavelengths. The outburst continued for two months. Our optical and nearinfrared polarimetric observations revealed that the position angle of the polarization (PA) apparently rotated clockwise by 240 degrees within 11 d in the active state (JD 2455063-2455074), and after this rotation, PA remained almost constant during our monitoring. In the outburst state, PA smoothly rotated counterclockwise by 350 degrees within 35 d (JD 2455157-2455192). Thus, we detected two distinct rotation events of polarization vector in opposite directions. We discuss these two events compared with the past rotation events observed in 2005, 2007 and 2008.



قيم البحث

اقرأ أيضاً

The blazar 3C454.3 exhibited a strong flare seen in gamma-rays, X-rays, and optical/NIR bands during 3--12 December 2009. Emission in the V and J bands rose more gradually than did the gamma-rays and soft X-rays, though all peaked at nearly the same time. Optical polarization measurements showed dramatic changes during the flare, with a strong anti-correlation between optical flux and degree of polarization (which rose from ~ 3% to ~ 20%) during the declining phase of the flare. The flare was accompanied by large rapid swings in polarization angle of ~ 170 degree. This combination of behaviors appear to be unique. We have cm-band radio data during the same period but they show no correlation with variations at higher frequencies. Such peculiar behavior may be explained using jet models incorporating fully relativistic effects with a dominant source region moving along a helical path or by a shock-in-jet model incorporating three-dimensional radiation transfer if there is a dominant helical magnetic field. We find that spectral energy distributions at different times during the flare can be fit using modified one-zone models where only the magnetic field strength and particle break frequencies and normalizations need change. An optical spectrum taken at nearly the same time provides an estimate for the central black hole mass of ~ 2.3 * 10^9 M_sun. We also consider two weaker flares seen during the $sim 200$ d span over which multi-band data are available. In one of them, the V and J bands appear to lead the $gamma$-ray and X-ray bands by a few days; in the other, all variations are simultaneous.
Since 2005, the blazar 3C 454.3 has shown remarkable flaring activity at all frequencies, and during the last four years it has exhibited more than one gamma-ray flare per year, becoming the most active gamma-ray blazar in the sky. We present for the first time the multi-wavelength AGILE, SWIFT, INTEGRAL, and GASP-WEBT data collected in order to explain the extraordinary gamma-ray flare of 3C 454.3 which occurred in November 2010. On 2010 November 20 (MJD 55520), 3C 454.3 reached a peak flux (E>100 MeV) of F_gamma(p) = (6.8+-1.0)E-5 ph/cm2/s on a time scale of about 12 hours, more than a factor of 6 higher than the flux of the brightest steady gamma-ray source, the Vela pulsar, and more than a factor of 3 brighter than its previous super-flare on 2009 December 2-3. The multi-wavelength data make a thorough study of the present event possible: the comparison with the previous outbursts indicates a close similarity to the one that occurred in 2009. By comparing the broadband emission before, during, and after the gamma-ray flare, we find that the radio, optical and X-ray emission varies within a factor 2-3, whereas the gamma-ray flux by a factor of 10. This remarkable behavior is modeled by an external Compton component driven by a substantial local enhancement of soft seed photons.
We present a multi-wavelength temporal analysis of the blazar 3C 454.3 during the high $gamma$-ray active period from May-December, 2014. Except for X-rays, the period is well sampled at near-infrared (NIR)-optical by the emph{SMARTS} facility and th e source is detected continuously on daily timescale in the emph{Fermi}-LAT $gamma$-ray band. The source exhibits diverse levels of variability with many flaring/active states in the continuously sampled $gamma$-ray light curve which are also reflected in the NIR-optical light curves and the sparsely sampled X-ray light curve by the emph{Swift}-XRT. Multi-band correlation analysis of this continuous segment during different activity periods shows a change of state from no lags between IR and $gamma$-ray, optical and $gamma$-ray, and IR and optical to a state where $gamma$-ray lags the IR/optical by $sim$3 days. The results are consistent with the previous studies of the same during various $gamma$-ray flaring and active episodes of the source. This consistency, in turn, suggests an extended localized emission region with almost similar conditions during various $gamma$-ray activity states. On the other hand, the delay of $gamma$-ray with respect to IR/optical and a trend similar to IR/optical in X-rays along with strong broadband correlations favor magnetic field related origin with X-ray and $gamma$-ray being inverse Comptonized of IR/optical photons and external radiation field, respectively.
The gamma-ray-detected blazar 3C 454.3 exhibits dramatic flux and polarization variations in the optical and near-infrared bands. In December 2010, the object emitted a very bright outburst. We monitored it for approximately four years (including the 2010 outburst) by optical and near-infrared photopolarimetry. During the 2010 outburst, the object emitted two rapid, redder brightenings, at which the polarization degrees (PDs) in both bands increased significantly and the bands exhibited a frequency-dependent polarization. The observed frequency-dependent polarization leads us to propose that the polarization vector is composed of two vectors. Therefore, we separate the observed polarization vectors into short and long-term components that we attribute to the emissions of the rapid brightenings and the outburst that varied the timescale of days and months, respectively. The estimated PD of the short-term component is greater than the maximum observed PD and is close to the theoretical maximum PD. We constrain the bulk Lorentz factors and inclination angles between the jet axis and the line of sight from the estimated PDs. In this case, the inclination angle of the emitting region of short-term component from the first rapid brightening should be equal to 90$^{circ}$, because the estimated PD of the short-term component was approximately equal to the theoretical maximum PD. Thus, the Doppler factor at the emitting region of the first rapid brightening should be equal to the bulk Lorentz factor.
Context. 3C 454.3 is a very active flat spectrum radio quasar (blazar) that has undergone a recent outburst in all observed bands, including the optical. Aims. In this work we explore the short-term optical variability of 3C 454.3 during its outbur st by searching for time delays between different optical bands. Finding one would be important for understanding the evolution of the spectrum of the relativistic electrons, which generate the synchrotron jet emission. Methods. We performed photometric monitoring of the object by repeating exposures in different optical bands (BVRI). Occasionally, different telescopes were used to monitor the object in the same band to verify the reliability of the smallest variations we observed. Results. Except on one occasion, where we found indications of a lag of the blue wavelengths behind the red ones, the results are inconclusive for most of the other cases. There were either no structures in the light curves to be able to search for patterns, or else different approaches led to different conclusions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا