ﻻ يوجد ملخص باللغة العربية
In this article we provide a classification of the projective transformations in $PSL(n+1,Bbb{C})$ considered as automorphisms of the complex projective space $Bbb{P}^n$. Our classification is an interplay between algebra and dynamics, which just as in the case of isometries of CAT(0)-spaces, can be given by means of tree three types, namely: elliptic, parabolic and loxodromic. We carefully describe the dynamic in each case, more precisely we determine the corresponding Kulkarnis limit set, the equicontinuity region, the discontinuity region and in some cases we provide families of maximal regions where the respective cyclic group acts properly discontinuously. Also we provide, in each case, some equivalents ways to classify the projective transformations.
We study the periodic orbits problem on energy levels of Tonelli Lagrangian systems over configuration spaces of arbitrary dimension. We show that, when the fundamental group is finite and the Lagrangian has no stationary orbit at the Ma~ne critical
We extend the definition of the pentagram map from 2D to higher dimensions and describe its integrability properties for both closed and twisted polygons by presenting its Lax form. The corresponding continuous limit of the pentagram map in dimension
For a tuple $A=(A_1, A_2, ..., A_n)$ of elements in a unital algebra ${mathcal B}$ over $mathbb{C}$, its {em projective spectrum} $P(A)$ or $p(A)$ is the collection of $zin mathbb{C}^n$, or respectively $zin mathbb{P}^{n-1}$ such that the multi-param
In a recent paper, Teo and Kane proposed a 3D model in which the defects support Majorana fermion zero modes. They argued that exchanging and twisting these defects would implement a set R of unitary transformations on the zero mode Hilbert space whi
In this article we show that Bers simultaneous uniformization as well as the Koebes retrosection theorem are not longer true for discrete groups of projective transformations acting on the complex projective space.