ترغب بنشر مسار تعليمي؟ اضغط هنا

Coherent Phonon Coupling to Individual Bloch States in Photoexcited Bismuth

160   0   0.0 ( 0 )
 نشر من قبل Luca Perfetti LP
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the temporal evolution of the electronic states at the bismuth (111) surface by means of time and angle resolved photoelectron spectroscopy. The binding energy of bulk-like bands oscillates with the frequency of the $A_{1g}$ phonon mode whereas surface states are insensitive to the coherent displacement of the lattice. A strong dependence of the oscillation amplitude on the electronic wavevector is correctly reproduced by textit{ab initio} calculations of electron-phonon coupling. Besides these oscillations, all the electronic states also display a photoinduced shift towards higher binding energy whose dynamics follows the evolution of the electronic temperature.



قيم البحث

اقرأ أيضاً

We investigate the ultrafast response of the bismuth (111) surface by means of time resolved photoemission spectroscopy. The direct visualization of the electronic structure allows us to gain insights on electron-electron and electron-phonon interact ion. Concerning electron-electron interaction, it is found that electron thermalization is fluence dependent and can take as much as several hundreds of femtoseconds at low fluences. This behavior is in qualitative agreement with Landaus theory of Fermi liquids but the data show deviations from the behavior of a common 3D degenerate electron gas. Concerning electron-phonon interaction, our data allows us to directly observe the coupling of individual Bloch state to the coherent $A_{1g}$ mode. It is found that surface states are much less coupled to this mode when compared to bulk states. This is confirmed by textit{ab initio} calculations of surface and bulk bismuth.
We determine experimentally the excited-state interatomic forces in photoexcited bismuth. The forces are obtained by a constrained least-squares fit of the excited-state dispersion obtained by femtosecond time-resolved x-ray diffuse scattering to a f ifteen-nearest neighbor Born-von Karman model. We find that the observed softening of the zone-center $A_{1g}$ optical mode and transverse acoustic modes with photoexcitation are primarily due to a weakening of three nearest neighbor forces along the bonding direction. This provides a more complete picture of what drives the partial reversal of the Peierls distortion previously observed in photoexcited bismuth.
Atomic motion of a photo-induced coherent phonon of bismuth (Bi) is directly observed with time-resolved x-ray diffraction under a cryogenic temperature. It is found that displacive excitation in a fully symmetric A$_{mathrm{1g}}$ phonon mode is supp ressed at a temperature $T = 9$ K. This result implies a switching of the phonon-generation mechanism from displacive to impulsive excitation with decreasing the temperature. It is comprehensibly understandable in a framework of stimulated Raman scattering. The suppression of displacive excitation also indicates that the adiabatic potential surface deviates from a parabolic one, which is assumed to be realized at room temperature. This study points out important aspects of phonon generation in transient phonon-induced quantum phenomena.
68 - Z. Liu , C. Vaswani , L. Luo 2020
The coherence of collective modes, such as phonons, and their modulation of the electronic states are long sought in complex systems, which is a cross-cutting issue in photovoltaics and quantum electronics. In photovoltaic cells and lasers based on m etal halide perovskites, the presence of polaronic coupling, i.e., photocarriers dressed by the macroscopic motion of charged lattice, assisted by terahertz (THz) longitudinal optical (LO) phonons, has been intensely studied yet still debated. This may be key for explaining the remarkable properties of the perovskite materials, e.g., defect tolerance, long charge lifetimes and diffusion length. Here we use the intense single-cycle THz pulse with the peak electric field up to $E_{THz}=$1000,kV/cm to drive coherent band-edge oscillations at room temperature in CH$_3$NH$_3$PbI$_3$. We reveal the oscillatory behavior dominantly to a specific quantized lattice vibration mode at $omega_{mathrm{LO}}sim$4 THz, being both dipole and momentum forbidden. THz-driven coherent dynamics exhibits distinguishing features: the room temperature coherent oscillations at $omega_{mathrm{LO}}$ longer than 1 ps in both single crystals and thin films; the {em mode-selective} modulation of different band edge states assisted by electron-phonon ($e$-$ph$) interaction; {em dynamic mode splitting} controlled by temperature due to entropy and anharmonicity of organic cations. Our results demonstrate intense THz-driven coherent band-edge modulation as a powerful probe of electron-lattice coupling phenomena and provide compelling implications for polaron correlations in perovskites.
215 - B. Arnaud , Y. Giret 2012
By means of first principles calculations, we computed the effective electron-phonon coupling constant $G_0$ governing the electron cooling in photoexcited bismuth. $G_0$ strongly increases as a function of electron temperature, which can be traced b ack to the semi-metallic nature of bismuth. We also used a thermodynamical model to compute the time evolution of both electron and lattice temperatures following laser excitation. Thereby, we simulated the time evolution of (1 -1 0), (-2 1 1) and (2 -2 0) Bragg peak intensities measured by Sciaini et al [Nature 458, 56 (2009)] in femtosecond electron diffraction experiments. The effect of the electron temperature on the Debye-Waller factors through the softening of all optical modes across the whole Brillouin zone turns out to be crucial to reproduce the time evolution of these Bragg peak intensities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا