ترغب بنشر مسار تعليمي؟ اضغط هنا

Transverse nucleon structure and multiparton interactions

74   0   0.0 ( 0 )
 نشر من قبل Mark Strikman
 تاريخ النشر 2011
  مجال البحث
والبحث باللغة English
 تأليف Mark Strikman




اسأل ChatGPT حول البحث

The transverse structure of the nucleon as probed in hard exclusive processes plays critical role in the understanding of the structure of the underlying event in hard collisions at the LHC, and multiparton interactions. We summarize results of our recent studies of manifestation of transverse nucleon structure in the hard collisions at the LHC, new generalized parton distributions involved in multiparton interactions, presence of parton fluctuations. The kinematic range where interaction of fast partons of the projectile with the target reach black disk regime (BDR) strength is estimated. We demonstrate that in the BDR postselection effect leads to effective fractional energy losses. This effect explains regularities of the single and double forward pion production in $ dAu$ collisions at RHIC and impacts on the forward physics in $pp$ collisions at the LHC.

قيم البحث

اقرأ أيضاً

117 - F. Hautmann , H. Jung 2017
The connection between multiparton interaction, diffractive processes and saturation effects is discussed. The relation of the rise of the gluon density at small longitudinal momentum fractions x with the occurrence of saturation, diffraction and mul tiparton interaction is being studied both experimentally and theoretically. We illustrate key ideas underlying recent progress, and stress the role of different theoretical approaches to small-x QCD evolution in investigations of multiparton interactions.
74 - B. Blok , M. Strikman 2016
We study the role of soft/nonperturbative correlations in the multi parton interactions in the central kinematics relevant for double parton scattering (DPS) and underlying event (UE) measurements at ATLAS and CMS. We show that the effect of soft cor relations is negligible for DPS regime (typical transverse momenta larger than 10-20 GeV), but may be important for UE (several GeV scale). The characteristic scale where soft correlations become important increases with decrease of $x$ (energy increase) leading to approximately constant effs at small x.
Transverse single-spin asymmetries in inclusive deep inelastic lepton-nucleon scattering can be generated through multiphoton exchange between the leptonic and the hadronic part of the process. Here we consider the two-photon exchange, and mainly foc us on the transverse target spin asymmetry. In particular, we investigate the case where two photons couple to different quarks. Such a contribution involves a quark-photon-quark correlator in the nucleon, which has a (model-dependent) relation to the Efremov-Teryaev-Qiu-Sterman quark-gluon-quark correlator T_F. Using different parametrizations for T_F we compute the transverse target spin asymmetries for both a proton and a neutron target and compare the results to recent experimental data. In addition, potential implications for our general understanding of single-spin asymmetries in hard scattering processes are discussed.
This work presents the first calculation in lattice QCD of three moments of spin-averaged and spin-polarized generalized parton distributions in the proton. It is shown that the slope of the associated generalized form factors decreases significantly as the moment increases, indicating that the transverse size of the light-cone quark distribution decreases as the momentum fraction of the struck parton increases.
We outline two important effects that are missing from most evaluations of the dark matter capture rate in neutron stars. As dark matter scattering with nucleons in the star involves large momentum transfer, nucleon structure must be taken into accou nt via a momentum dependence of the hadronic form factors. In addition, due to the high density of neutron star matter, we should account for nucleon interactions rather than modeling the nucleons as an ideal Fermi gas. Properly incorporating these effects is found to suppress the dark matter capture rate by up to three orders of magnitude for the heaviest stars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا