ﻻ يوجد ملخص باللغة العربية
In this paper we consider a bosonic Josephson junction described by a two-mode Bose-Hubbard model, and we thoroughly analyze a quantum phase transition occurring in the system in the limit of infinite bosonic population. We discuss the relation between this quantum phase transition and the dynamical bifurcation occurring in the spectrum of the Discrete Self Trapping equations describing the system at the semiclassical level. In particular, we identify five regimes depending on the strength of the effective interaction among bosons, and study the finite-size effects arising from the finiteness of the bosonic population. We devote a special attention to the critical regime which reduces to the dynamical bifurcation point in the thermodynamic limit of infinite bosonic population. Specifically, we highlight an anomalous scaling in the population imbalance between the two wells of the trapping potential, as well as in two quantities borrowed from Quantum Information Theory, i.e. the entropy of entanglement and the ground-state fidelity. Our analysis is not limited to the zero temperature case, but considers thermal effects as well.
We investigate finite-size quantum effects in the dynamics of $N$ bosonic particles which are tunneling between two sites adopting the two-site Bose-Hubbard model. By using time-dependent atomic coherent states (ACS) we extend the standard mean-field
We propose a new scheme for observing Josephson oscillations and macroscopic quantum self-trapping phenomena in a toroidally confined Bose-Einstein condensate: a dipolar self-induced Josephson junction. Polarizing the atoms perpendicularly to the tra
Measure synchronization (MS) in a two-species bosonic Josephson junction (BJJ) is studied based on semi-classical theory. Six different scenarios for MS, including two in the Josephson oscillation regime (0 phase mode) and four in the self-trapping r
The out-of-equilibrium quantum dynamics of an interacting Bose gas trapped in a 1D asymmetric double-well potential is studied by solving the many-body Schrodinger equation numerically accurately. We examine how the loss of symmetry of the confining
We describe an apparatus designed to make non-demolition measurements on a Bose-Einstein condensate (BEC) trapped in a double-well optical cavity. This apparatus contains, as well as the bosonic gas and the trap, an optical cavity. We show how the in