ترغب بنشر مسار تعليمي؟ اضغط هنا

Molecule survival in magnetized protostellar disk winds. I. Chemical model and first results

128   0   0.0 ( 0 )
 نشر من قبل Despina Panoglou
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Molecular counterparts to atomic jets have been detected within 1000 AU of young stars. Reproducing them is a challenge for proposed ejection models. We explore whether molecules may survive in an MHD disk wind invoked to reproduce the kinematics and tentative rotation signatures of atomic jets in T Tauri stars. The coupled ionization, chemical and thermal evolution along dusty flow streamlines is computed for a prescribed MHD disk wind solution, using a method developed for magnetized shocks in the interstellar medium. Irradiation by wind-attenuated coronal X-rays and FUV photons from accretion hot spots is included, with self-shielding of H2 and CO. Disk accretion rates of 5e-6, 1e-6 and 1e-7 solar masses per year are considered, representative of low-mass young protostars (Class 0), evolved protostars (Class I) and very active T Tauri stars (Class II). The disk wind has an onion-like thermo-chemical structure, with streamlines launched from larger radii having lower temperature and ionisation, and higher H2 abundance. The coupling between charged and neutral fluids is sufficient to eject molecules from the disk out to 9 AU. The launch radius beyond which most H2 survives moves outward with evolutionary stage. CO survives in the Class 0 but is significantly photodissociated in the Class I/II. Balance between ambipolar heating and molecular cooling establishes an asymptotic temperature 700-3000 K, with cooler jets at earlier protostellar stages. Endothermic formation of H2O is efficient with abundances up to 1e-4, while CH+ and SH+ can exceed 1e-6 in the Class I/II winds. A centrifugal MHD disk wind launched from beyond 0.2-1 AU can produce molecular jets/winds up to speeds 100 km/s in young low-mass stars. The model predicts a high ratio H2/CO and an increase of molecular launch radius, temperature, and flow width as the source evolves, in agreement with current observed trends.

قيم البحث

اقرأ أيضاً

We analyze a 900-ks stacked Chandra/HETG spectrum of NGC 3783 in the context of magnetically-driven accretion-disk wind models in an effort to provide tight constraints on the global conditions of the underlying absorbers. Motivated by the earlier me asurements of its absorption measure distribution (AMD) indicating X-ray-absorbing ionic columns that decrease slowly with decreasing ionization parameter, we employ 2D magnetohydrodynamic (MHD) disk-wind models to describe the global outflow. We compute its photoionization structure along with the wind kinematic properties allowing us to further calculate in a self-consistent fashion the shapes of the major X-ray absorption lines. With the wind radial density profile determined by the AMD, the profiles of the ensemble of the observed absorption features are determined by the two global parameters of the MHD wind; i.e. disk inclination theta_obs and wind density normalization n_o. Considering the most significant absorption features in the (~1.8A-20A) range, we show that the MHD-wind is best described by n(r)~6.9e11(r/ro)^-1.15 [cm^-3] and theta_obs=44deg. We argue that winds launched by X-ray heating, radiation pressure or even MHD winds but with steeper radial density profiles are strongly disfavored by data. Considering the properties of Fe K band absorption features (i.e. Fe xxv and Fe xxvi), while typically prominent in the AGN X-ray spectra, they appear to be weak in NGC 3783. For the specific parameters of our model obtained by fitting the AMD and the rest of absorption features, these features are found to be weak in agreement with observation.
Recent ALMA observations suggest that the highest velocity part of molecular protostellar jets are launched from the dust-sublimation regions of the accretion disks (<0.3 au). However, formation and survival of molecules in inner protostellar disk wi nds, in the presence of a harsh FUV radiation field and the absence of dust, remain unexplored. We aim at determining if simple molecules can be synthesized and spared in fast and collimated dust-free disk winds or if a fraction of dust is necessary to explain the observed molecular abundances. This work is based on the Paris-Durham shock code designed to model irradiated environments. Fundamental properties of the dust-free chemistry are investigated from single point models. A laminar 1D disk wind model is then built using a parametric flow geometry. This model includes time-dependent chemistry and the attenuation of the radiation field by gas-phase photoprocesses. We show that a small fraction of H2 (< 1e-2), primarily formed through the H- route, can efficiently initiate molecule synthesis such as CO and SiO above TK ~ 800 K. The attenuation of the radiation field by atomic species (eg. C, Si, S) proceeds through continuum self-shielding. This process ensures efficient formation of CO, OH, SiO, H2O through neutral-neutral reactions, and the survival of these molecules. Class 0 dust-free winds with high mass-loss rates ($dot{M}_w >$ 2e-6 Msun/yr) are predicted to be rich in molecules if warm (TK > 800 K). The molecular content of disk winds is very sensitive to the presence of dust and a mass-fraction of surviving dust as small as 1e-5 significantly increases the H2O and SiO abundances. Chemistry of high-velocity jets is a powerful tool to probe their content in dust and uncover their launching point. Models of internal shocks are required to fully exploit the current (sub-)millimeter observations and prepare future JWST observations.
The physical and chemical conditions in Class 0/I protostars are fundamental in unlocking the protostellar accretion process and its impact on planet formation. The aim is to determine which physical components are traced by different molecules at su b-arcsecond scales (100 - 400 au). We use a suite of Atacama Large Millimeter/submillimeter Array (ALMA) datasets in Band 6 (1 mm), Band 5 (1.8 mm) and Band 3 (3 mm) at spatial resolutions 0.5 - 3 for 16 protostellar sources. The protostellar envelope is well traced by C$^{18}$O, DCO$^+$ and N$_2$D$^+$, with the freeze-out of CO governing the chemistry at envelope scales. Molecular outflows are seen in classical shock tracers like SiO and SO, but ice-mantle products such as CH$_3$OH and HNCO released with the shock are also observed. The molecular jet is prominent not only in SiO and SO but also occasionally in H$_2$CO. The cavity walls show tracers of UV-irradiation such as C$_2$H c-C$_3$H$_2$ and CN. The hot inner envelope, apart from showing emission from complex organic molecules (COMs), also presents compact emission from small molecules like H$_2$S, SO, OCS and H$^{13}$CN, most likely related to ice sublimation and high-temperature chemistry. Sub-arcsecond millimeter-wave observations allow to identify those (simple) molecules that best trace each of the physical components of a protostellar system. COMs are found both in the hot inner envelope (high excitation lines) and in the outflows (lower-excitation lines) with comparable abundances. COMs can coexist with hydrocarbons in the same protostellar sources, but they trace different components. In the near future, mid-IR observations with JWST-MIRI will provide complementary information about the hottest gas and the ice mantle content, at unprecedented sensitivity and at resolutions comparable to ALMA for the same sources.
We perform a comparative numerical hydrodynamics study of embedded protostellar disks formed as a result of the gravitational collapse of cloud cores of distinct mass (M_cl=0.2--1.7 M_sun) and ratio of rotational to gravitational energy (beta=0.0028- -0.023). An increase in M_cl and/or beta leads to the formation of protostellar disks that are more susceptible to gravitational instability. Disk fragmentation occurs in most models but its effect is often limited to the very early stage, with the fragments being either dispersed or driven onto the forming star during tens of orbital periods. Only cloud cores with high enough M_cl or beta may eventually form wide-separation binary/multiple systems with low mass ratios and brown dwarf or sub-solar mass companions. It is feasible that such systems may eventually break up, giving birth to rogue brown dwarfs. Protostellar disks of {it equal} age formed from cloud cores of greater mass (but equal beta) are generally denser, hotter, larger, and more massive. On the other hand, protostellar disks formed from cloud cores of higher beta (but equal M_cl) are generally thinner and colder but larger and more massive. In all models, the difference between the irradiation temperature and midplane temperature triangle T is small, except for the innermost regions of young disks, dense fragments, and disks outer edge where triangle T is negative and may reach a factor of two or even more. Gravitationally unstable, embedded disks show radial pulsations, the amplitude of which increases along the line of increasing M_cl and beta but tends to diminish as the envelope clears. We find that single stars with a disk-to-star mass ratio of order unity can be formed only from high-beta cloud cores, but such massive disks are unstable and quickly fragment into binary/multiple systems.
We present ALMA observations of organic molecules towards five low-mass Class 0/I protostellar disk candidates in the Serpens cluster. Three sources (Ser-emb 1, Ser-emb 8, and Ser-emb 17) present emission of CH3OH as well as CH3OCH3, CH3OCHO, and CH2 CO, while NH2CHO is detected in just Ser-emb 8 and Ser-emb 17. Detecting hot corino-type chemistry in three of five sources represents a high occurrence rate given the relative sparsity of these sources in the literature, and this suggests a possible link between protostellar disk formation and hot corino formation. For sources with CH3OH detections, we derive column densities of 10^{17}-10^{18} cm^{-2} and rotational temperatures of ~200-250 K. The CH3OH-normalized column density ratios of large, oxygen-bearing COMs in the Serpens sources and other hot corinos span two orders of magnitude, demonstrating a high degree of chemical diversity at the hot corino stage. Resolved observations of a larger sample of objects are needed to understand the origins of chemical diversity in hot corinos, and the relationship between different protostellar structural elements on disk-forming scales.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا