ترغب بنشر مسار تعليمي؟ اضغط هنا

Energy Loss Calculations of Moving Defects for General Holographic Metrics

85   0   0.0 ( 0 )
 نشر من قبل Andreas Karch
 تاريخ النشر 2011
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We extend the ideas of using AdS/CFT to calculate energy loss of extended defects in strongly coupled systems to general holographic metrics. We find the equations of motion governing uniformly moving defects of various dimension and determine the corresponding energy loss rates in terms of the metric coefficients. We apply our formulae to the specific examples of both bulk geometries created by general Dp-branes, as well as to holographic superfluids. For the Dp-branes, we find that the energy loss of our defect, in addition to the expected quadratic dependence on velocity, depends on velocity only via an effective blueshifted temperature - despite the existence of a microscopic length scale in the theory. We also find, for a certain value of p and dimension of the defect, that the energy loss has no dependence on temperature or velocity other than the aforementioned quadratic dependence on velocity. For the superfluid example, we find agreement with previous results on the existence of a cutoff velocity, below which the probe experiences no drag force. For both examples we can easily extend the equations of motion and energy loss to defects of larger dimension.



قيم البحث

اقرأ أيضاً

Defect conformal field theories (dCFTs) have been attracting increased attention recently, mainly because they enable us to bridge the gap between idealistic, highly symmetric models of our world (such as the particle/string duality) and real-world s ystems. This talk is about the AdS/defect CFT correspondence, an exciting new proposal that joins the forces of holography, integrability, supersymmetric localization and the conformal bootstrap program in a framework that is appropriate for the study of defects in real-world systems. After introducing dCFTs and some of their holographic realizations, we will present some recent results for the one-point functions of the integrable dCFTs that are the holographic duals of the D3-probe-D5 and the D3-probe-D7 systems of intersecting branes.
We study SU(N) Yang-Mills-Chern-Simons theory in the presence of defects that shift the Chern-Simons level from a holographic point of view by embedding the system in string theory. The model is a D3-D7 system in Type IIB string theory, whose gravity dual is given by the AdS soliton background with probe D7-branes attaching to the AdS boundary along the defects. We holographically renormalize the free energy of the defect system with sources, from which we obtain the correlation functions for certain operators naturally associated to these defects. We find interesting phase transitions when the separation of the defects as well as the temperature are varied. We also discuss some implications for the Fractional Quantum Hall Effect and for two-dimensional QCD.
Energy loss in anisotropic hot dense QGP in external magnetic field is studied within holographic approach. Energy loss is calculated by estimation of behaviour of the spatial Wilson loops using the effective potential technique. We examine the depen dence of the effective potential on the spatial Wilson loops orientation in fully anisotropic background. For this purpose we obtain general formulas for the effective potential and study appearance of the effective potential dynamical wall. We consider particular fully anisotropic model [arXiv:2011.07023] supported by Einstein-Dilaton-three-Maxwell action. The effective potential strongly depends on the parameters of anisotropy and magnetic field, therefore the energy loss depends on physical parameters $-$ $T$, $mu$, $c_B$ and orientation. Orientation is determined by angles between the moving heavy quark velocity, the axis of heavy ions collision and their impact parameter vector.
We explore the two holographic complexity proposals for the case of a 2d boundary CFT with a conformal defect. We focus on a Randall-Sundrum type model of a thin AdS$_2$ brane embedded in AdS$_3$. We find that, using the complexity=volume proposal, t he presence of the defect generates a logarithmic divergence in the complexity of the full boundary state with a coefficient which is related to the central charge and to the boundary entropy. For the complexity=action proposal we find that the complexity is not influenced by the presence of the defect. This is the first case in which the results of the two holographic proposals differ so dramatically. We consider also the complexity of the reduced density matrix for subregions enclosing the defect. We explore two bosonic field theory models which include two defects on opposite sides of a periodic domain. We point out that for a compact boson, current free field theory definitions of the complexity would have to be generalized to account for the effect of zero-modes.
156 - Yi Ling , Yuxuan Liu , Chao Niu 2019
We investigate general features of the evolution of holographic subregion complexity (HSC) on Vaidya-AdS metric with a general form. The spacetime is dual to a sudden quench process in quantum system and HSC is a measure of the ``difference between t wo mixed states. Based on the subregion CV (Complexity equals Volume) conjecture and in the large size limit, we extract out three distinct stages during the evolution of HSC: the stage of linear growth at the early time, the stage of linear growth with a slightly small rate during the intermediate time and the stage of linear decrease at the late time. The growth rates of the first two stages are compared with the Lloyd bound. We find that with some choices of certain parameter, the Lloyd bound is always saturated at the early time, while at the intermediate stage, the growth rate is always less than the Lloyd bound. Moreover, the fact that the behavior of CV conjecture and its version of the subregion in Vaidya spacetime implies that they are different even in the large size limit.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا