ﻻ يوجد ملخص باللغة العربية
We extend the ideas of using AdS/CFT to calculate energy loss of extended defects in strongly coupled systems to general holographic metrics. We find the equations of motion governing uniformly moving defects of various dimension and determine the corresponding energy loss rates in terms of the metric coefficients. We apply our formulae to the specific examples of both bulk geometries created by general Dp-branes, as well as to holographic superfluids. For the Dp-branes, we find that the energy loss of our defect, in addition to the expected quadratic dependence on velocity, depends on velocity only via an effective blueshifted temperature - despite the existence of a microscopic length scale in the theory. We also find, for a certain value of p and dimension of the defect, that the energy loss has no dependence on temperature or velocity other than the aforementioned quadratic dependence on velocity. For the superfluid example, we find agreement with previous results on the existence of a cutoff velocity, below which the probe experiences no drag force. For both examples we can easily extend the equations of motion and energy loss to defects of larger dimension.
Defect conformal field theories (dCFTs) have been attracting increased attention recently, mainly because they enable us to bridge the gap between idealistic, highly symmetric models of our world (such as the particle/string duality) and real-world s
We study SU(N) Yang-Mills-Chern-Simons theory in the presence of defects that shift the Chern-Simons level from a holographic point of view by embedding the system in string theory. The model is a D3-D7 system in Type IIB string theory, whose gravity
Energy loss in anisotropic hot dense QGP in external magnetic field is studied within holographic approach. Energy loss is calculated by estimation of behaviour of the spatial Wilson loops using the effective potential technique. We examine the depen
We explore the two holographic complexity proposals for the case of a 2d boundary CFT with a conformal defect. We focus on a Randall-Sundrum type model of a thin AdS$_2$ brane embedded in AdS$_3$. We find that, using the complexity=volume proposal, t
We investigate general features of the evolution of holographic subregion complexity (HSC) on Vaidya-AdS metric with a general form. The spacetime is dual to a sudden quench process in quantum system and HSC is a measure of the ``difference between t