ﻻ يوجد ملخص باللغة العربية
Studies have suggested that there is a strong correlation between the masses of nuclear star clusters (NSCs) and their host galaxies, a correlation which said to be an extension of the well-known correlations between supermassive black holes (SMBHs) and their host galaxies. But careful analysis of disk galaxies -- including 2D bulge/disk/bar decompositions -- shows that while SMBHs correlate with the stellar mass of the bulge component of galaxies, the masses of NSCs correlate much better with the total galaxy stellar mass. In addition, the mass ratio M_nsc/M_star,tot for NSCs in spirals (at least those with Hubble types Sc and later) is typically an order of magnitude smaller than the mass ratio M_bh/M_star, bulge of SMBHs. The absence of a universal central massive object correlation argues against common formation and growth mechanisms for both SMBHs and NSCs. We also discuss evidence for a break in the NSC-host galaxy correlation: galaxies with Hubble types earlier than Sbc appear to host systematically more massive NSCs than do types Sc and later.
We investigate the effect of active galactic nucleus (AGN) variability on the observed connection between star formation and black hole accretion in extragalactic surveys. Recent studies have reported relatively weak correlations between observed AGN
Current theoretical models predict a mass gap with a dearth of stellar black holes (BHs) between roughly $50,M_odot$ and $100,M_odot$, while, above the range accessible through massive star evolution, intermediate-mass BHs (IMBHs) still remain elusiv
We study black hole - host galaxy correlations, and the relation between the over-massiveness (the distance from the average $M_{BH}-sigma$ relation) of super-massive black holes (SMBHs) and star formation histories of their host galaxies in the Illu
Galactic nuclei typically host either a Nuclear Star Cluster (NSC, prevalent in galaxies with masses $lesssim 10^{10}M_odot$) or a Massive Black Hole (MBH, common in galaxies with masses $gtrsim 10^{12}M_odot$). In the intermediate mass range, some n
We use data from large surveys of the local Universe (SDSS+Galaxy Zoo) to show that the galaxy-black hole connection is linked to host morphology at a fundamental level. The fraction of early-type galaxies with actively growing black holes, and there