ترغب بنشر مسار تعليمي؟ اضغط هنا

What Shapes the Galaxy Mass Function? Exploring the Roles of Supernova-Driven Winds and AGN

52   0   0.0 ( 0 )
 نشر من قبل Richard Bower
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English
 تأليف R. G. Bower




اسأل ChatGPT حول البحث

The observed stellar mass function (SMF) is very different to the halo mass function predicted by Lambda-CDM, and it is widely accepted that this is due to energy feedback from supernovae and black holes. However, the strength and form of this feedback is not understood. In this paper, we use the phenomenological model GALFORM to explore how galaxy formation depends on the strength and halo mass dependence of feedback. We focus on expulsion models in which the wind mass loading, beta, is proportional to 1/vdisk^n, with n=0,1,2 and contrast these models with the successful Bower et al. 2008 model (B8W7). A crucial development is that our code explicitly accounts for the recapture of expelled gas as the systems halo mass (and thus gravitational potential) increases. We find that a model with modest wind speed but high mass loading matches the flat portion of the SMF. When combined with AGN feedback, the model provides a good description of the observed SMF above 10^9 h^-1 Msol. However, in the expulsion models, the brightest galaxies are assembled more recently than in B8W7, and the specific star formation rates of galaxies decrease strongly with decreasing stellar mass. The expulsion models also tend to have a cosmic star formation density that is dominated by lower mass galaxies at z=1-3, and dominated high mass galaxies at low redshift. These trends are in conflict with observational data, but the comparison highlights some deficiencies of the B8W7 model also. The experiments in this paper give us important physical insight to the impact of the feedback process on the formation histories of galaxies, but the strong mass dependence of feedback adopted in B8W7 still appears to provide the most promising description of the observed universe.

قيم البحث

اقرأ أيضاً

We determine the local metallicity of the ionized gas for more than $9.2times 10^5$ star forming regions (spaxels) located in 1023 nearby galaxies included in the SDSS-IV MaNGA IFU survey. We use the dust extinction derived from the Balmer decrement and stellar template fitting in each spaxel to estimate the local gas and stellar mass densities, respectively. We also use the measured rotation curves to determine the local escape velocity ($mathrm{V_{esc}}$). We have then analyze the relationships between the local metallicity and both the local gas fraction ($mu$) and $mathrm{V_{esc}}$. We find that metallicity decreases with both increasing $mu$ and decreasing $mathrm{V_{esc}}$. By examining the residuals in these relations we show that the gas fraction plays a more primary role in the local chemical enrichment than $mathrm{V_{esc}}$. We show that the gas-regulator model of chemical evolution provides a reasonable explanation of the metallicity on local scales. The best-fit parameters for this model are consistent with metal loss caused by momentum-driven galactic outflows. We also argue that both the gas fraction and local escape velocity are connected to the local stellar surface density, which in turn is a tracer of the epoch at which the dominant local stellar population formed
We investigate the dependence of galaxy structure on a variety of galactic and environmental parameters for ~500,000 galaxies at z<0.2, taken from the Sloan Digital Sky Survey data release 7 (SDSS-DR7). We utilise bulge-to-total stellar mass ratio, ( B/T)_*, as the primary indicator of galactic structure, which circumvents issues of morphological dependence on waveband. We rank galaxy and environmental parameters in terms of how predictive they are of galaxy structure, using an artificial neural network approach. We find that distance from the star forming main sequence (Delta_SFR), followed by stellar mass (M_*), are the most closely connected parameters to (B/T)_*, and are significantly more predictive of galaxy structure than global star formation rate (SFR), or any environmental metric considered (for both central and satellite galaxies). Additionally, we make a detailed comparison to the Illustris hydrodynamical simulation and the LGalaxies semi-analytic model. In both simulations, we find a significant lack of bulge-dominated galaxies at a fixed stellar mass, compared to the SDSS. This result highlights a potentially serious problem in contemporary models of galaxy evolution.
In naturalistic learning problems, a models input contains a wide range of features, some useful for the task at hand, and others not. Of the useful features, which ones does the model use? Of the task-irrelevant features, which ones does the model r epresent? Answers to these questions are important for understanding the basis of models decisions, as well as for building models that learn versatile, adaptable representations useful beyond the original training task. We study these questions using synthetic datasets in which the task-relevance of input features can be controlled directly. We find that when two features redundantly predict the labels, the model preferentially represents one, and its preference reflects what was most linearly decodable from the untrained model. Over training, task-relevant features are enhanced, and task-irrelevant features are partially suppressed. Interestingly, in some cases, an easier, weakly predictive feature can suppress a more strongly predictive, but more difficult one. Additionally, models trained to recognize both easy and hard features learn representations most similar to models that use only the easy feature. Further, easy features lead to more consistent representations across model runs than do hard features. Finally, models have greater representational similarity to an untrained model than to models trained on a different task. Our results highlight the complex processes that determine which features a model represents.
We present the Galaxy Stellar Mass Function (MF) up to z~1 from the zCOSMOS-bright 10k spectroscopic sample. We investigate the total MF and the contribution of ETGs and LTGs, defined by different criteria (SED, morphology or star formation). We unve il a galaxy bimodality in the global MF, better represented by 2 Schechter functions dominated by ETGs and LTGs, respectively. For the global population we confirm that low-mass galaxies number density increases later and faster than for massive galaxies. We find that the MF evolution at intermediate-low values of Mstar (logM<10.6) is mostly explained by the growth in stellar mass driven by smoothly decreasing star formation activities. The low residual evolution is consistent with ~0.16 merger per galaxy per Gyr (of which fewer than 0.1 are major). We find that ETGs increase in number density with cosmic time faster for decreasing Mstar, with a median building redshift increasing with mass, in contrast with hierarchical models. For LTGs we find that the number density of blue or spiral galaxies remains almost constant from z~1. Instead, the most extreme population of active star forming galaxies is rapidly decreasing in number density. We suggest a transformation from blue active spirals of intermediate mass into blue quiescent and successively (1-2 Gyr after) into red passive types. The complete morphological transformation into red spheroidals, required longer time-scales or follows after 1-2 Gyr. A continuous replacement of blue galaxies is expected by low-mass active spirals growing in stellar mass. We estimate that on average ~25% of blue galaxies is transforming into red per Gyr for logM<11. We conclude that the build-up of galaxies and ETGs follows the same downsizing trend with mass as the formation of their stars, converse to the trend predicted by current SAMs. We expect a negligible evolution of the global Galaxy Baryonic MF.
We use 1 kpc resolution cosmological AMR simulations of a Virgo-like galaxy cluster to investigate the effect of feedback from supermassive black holes (SMBH) on the mass distribution of dark matter, gas and stars. We compared three different models: (i) a standard galaxy formation model featuring gas cooling, star formation and supernovae feedback, (ii) a quenching model for which star formation is artificially suppressed in massive halos and finally (iii) the recently proposed AGN feedback model of Booth & Schaye (2009). Without AGN feedback (even in the quenching case), our simulated cluster suffers from a strong overcooling problem, with a stellar mass fraction significantly above observed values in M87. The baryon distribution is highly concentrated, resulting in a strong adiabatic contraction (AC) of dark matter. With AGN feedback, on the contrary, the stellar mass in the bright central galaxy (BCG) lies below observational estimates and the overcooling problem disappears. The stellar mass of the BCG is seen to increase with increasing mass resolution, suggesting that our stellar masses converges to the correct value from below. The gas and total mass distributions are in striking agreement with observations. We also find a slight deficit (~10%) of baryons at the virial radius, due to the effect of AGN-driven shock waves pushing gas to Mpc scales and beyond. This baryon deficit results in a slight adiabatic expansion of the dark matter distribution, that can be explained quantitatively by AC theory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا