ترغب بنشر مسار تعليمي؟ اضغط هنا

The endpoint formalism for the calculation of electromagnetic radiation and its applications in astroparticle physics

40   0   0.0 ( 0 )
 نشر من قبل Tim Huege
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the endpoint formalism for the calculation of electromagnetic radiation and illustrate its applications in astroparticle physics. We use the formalism to explain why the coherent radiation from the Askaryan effect is not in general Cherenkov radiation, as the emission directly results from the time-variation of the net charge in the particle shower. Secondly, we illustrate how the formalism has been applied in the air shower radio emission code REAS3 to unify the microscopic and macroscopic views of radio emission from extensive air showers. Indeed, the formalism is completely universal and particularly well-suited for implementation in Monte Carlo codes in the time- and frequency-domains. It easily reproduces well-known classical mechanisms such as synchrotron radiation, Vavilov-Cherenkov radiation and transition radiation in the adequate limits, but has the advantage that it continues to work in realistic, complex situations, where the classical mechanisms tend to no longer apply and adhering to them can result in misleading interpretations.

قيم البحث

اقرأ أيضاً

The SiPM is a novel solid state photodetector which can be operated in the single photon counting mode. It has excellent features, such as high quantum efficiency, good charge resolution, fast response, very compact size, high gain of 106, very low p ower consumption, immunity to the magnetic field and low bias voltage (30-70V). Drawbacks of this device currently are a large dark current, crosstalk between micropixels and relatively low sensitivity to UV and blue light. In the last few years, we have developed large size SiPMs (9 mm^2 and 25 mm^2) for applications in the imaging atmospheric Cherenkov telescopes, MAGIC and CTA, and in the space-borne fluorescence telescope EUSO. The current status of the SiPM development by MPI and MEPhI will be presented.
Precision measurements of charged cosmic rays have recently been carried out by space-born (e.g. AMS-02), or ground experiments (e.g. HESS). These measured data are important for the studies of astro-physical phenomena, including supernova remnants, cosmic ray propagation, solar physics and dark matter. Those scenarios usually contain a number of free parameters that need to be adjusted by observed data. Some techniques, such as Markov Chain Monte Carlo and MultiNest, are developed in order to solve the above problem. However, it is usually required a computing farm to apply those tools. In this paper, a genetic algorithm for finding the optimum parameters for cosmic ray injection and propagation is presented. We find that this algorithm gives us the same best fit results as the Markov Chain Monte Carlo but consuming less computing power by nearly 2 orders of magnitudes.
The Sun is an excellent laboratory for astroparticle physics but remains poorly understood at GeV--TeV energies. Despite the immense relevance for both cosmic-ray propagation and dark matter searches, only in recent years has the Sun become a target for precision gamma-ray astronomy with the Fermi-LAT instrument. Among the most surprising results from the observations is a hard excess of GeV gamma-ray flux that strongly anti-correlates with solar activity, especially at the highest energies accessible to Fermi-LAT. Most of the observed properties of the gamma-ray emission cannot be explained by existing models of cosmic-ray interactions with the solar atmosphere. GeV--TeV gamma-ray observations of the Sun spanning an entire solar cycle would provide key insights into the origin of these gamma rays, and consequently improve our understanding of the Suns environment as well as the foregrounds for new physics searches, such as dark matter. These can be complemented with new observations with neutrinos and cosmic rays. Together these observations make the Sun a new testing ground for particle physics in dynamic environments.
The modern astrophysics is moving towards the enlarging of experiments and combining the channels for detecting the highest energy processes in the Universe. To obtain reliable data, the experiments should operate within several decades, which means that the data will be obtained and analyzed by several generations of physicists. Thus, for the stability of the experiments, it is necessary to properly maintain not only the data life cycle, but also the human aspects, for example, attracting, learning and continuity. To this end, an educational and outreach resource has been deployed in the framework of German-Russian Astroparticle Data Life Cycle Initiative (GRADLCI).
The open science framework defined in the German-Russian Astroparticle Data Life Cycle Initiative (GRADLCI) has triggered educational and outreach activities at the Irkutsk State University (ISU), which is actively participated in the two major astro particle facilities in the region: TAIGA observatory and Baikal-GVD neutrino telescope. We describe the ideas grew out of this unique environment and propose a new open science laboratory based on education and outreach as well as on the development and testing new methods and techniques for the multimessenger astronomy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا