ترغب بنشر مسار تعليمي؟ اضغط هنا

Ergodicity and Percolation for Variants of One-dimensional Voter Models

93   0   0.0 ( 0 )
 نشر من قبل Yevhen Mohylevskyy
 تاريخ النشر 2011
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study variants of one-dimensional q-color voter models in discrete time. In addition to the usual voter model transitions in which a color is chosen from the left or right neighbor of a site there are two types of noisy transitions. One is bulk nucleation where a new random color is chosen. The other is boundary nucleation where a random color is chosen only if the two neighbors have distinct colors. We prove under a variety of conditions on q and the magnitudes of the two noise parameters that the system is ergodic, i.e., there is convergence to a unique invariant distribution. The methods are percolation-based using the graphical structure of the model which consists of coalescing random walks combined with branching (boundary nucleation) and dying (bulk nucleation).

قيم البحث

اقرأ أيضاً

We study the scaling limit of a large class of voter model perturbations in one dimension, including stochastic Potts models, to a universal limiting object, the continuum voter model perturbation. The perturbations can be described in terms of bulk and boundary nucleations of new colors (opinions). The discrete and continuum (space) models are obtained from their respective duals, the discrete net with killing and Brownian net with killing. These determine the color genealogy by means of reduced graphs. We focus our attention on models where the voter and boundary nucleation dynamics depend only on the colors of nearest neighbor sites, for which convergence of the discrete net with killing to its continuum analog was proved in an earlier paper by the authors. We use some detailed properties of the Brownian net with killing to prove voter model perturbations convergence to its continuum counterpart. A crucial property of reduced graphs is that even in the continuum, they are finite almost surely. An important issue is how vertices of the continuum reduced graphs are strongly approximated by their discrete analogues.
The voter model is a classical interacting particle system modelling how consensus is formed across a network. We analyse the time to consensus for the voter model when the underlying graph is a subcritical scale-free random graph. Moreover, we gener alise the model to include a `temperature parameter. The interplay between the temperature and the structure of the random graph leads to a very rich phase diagram, where in the different phases different parts of the underlying geometry dominate the time to consensus. Finally, we also consider a discursive voter model, where voters discuss their opinions with their neighbours. Our proofs rely on the well-known duality to coalescing random walks and a detailed understanding of the structure of the random graphs.
We consider a type of long-range percolation problem on the positive integers, motivated by earlier work of others on the appearance of (in)finite words within a site percolation model. The main issue is whether a given infinite binary word appears w ithin an iid Bernoulli sequence at locations that satisfy certain constraints. We settle the issue in some cases, and provide partial results in others.
We discuss variational formulas for the limits of certain models of motion in a random medium: namely, the limiting time constant for last-passage percolation and the limiting free energy for directed polymers. The results are valid for models in arb itrary dimension, steps of the admissible paths can be general, the environment process is ergodic under shifts, and the potential accumulated along a path can depend on the environment and the next step of the path. The variational formulas come in two types: one minimizes over gradient-like cocycles, and another one maximizes over invariant measures on the space of environments and paths. Minimizing cocycles can be obtained from Busemann functions when these can be proved to exist. The results are illustrated through 1+1 dimensional exactly solvable examples, periodic examples, and polymers in weak disorder.
Consider a one-dimensional stepping stone model with colonies of size $M$ and per-generation migration probability $ u$, or a voter model on $mathbb{Z}$ in which interactions occur over a distance of order $K$. Sample one individual at the origin and one at $L$. We show that if $M u/L$ and $L/K^2$ converge to positive finite limits, then the genealogy of the sample converges to a pair of Brownian motions that coalesce after the local time of their difference exceeds an independent exponentially distributed random variable. The computation of the distribution of the coalescence time leads to a one-dimensional parabolic differential equation with an interesting boundary condition at 0.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا