ﻻ يوجد ملخص باللغة العربية
QCD lattice simulations yield hadron masses as functions of the quark masses. From the gradients of the hadron masses the sigma terms can then be determined. We consider here dynamical 2+1 flavour simulations, in which we start from a point of the flavour symmetric line and then keep the singlet or average quark mass fixed as we approach the physical point. This leads to highly constrained fits for hadron masses in a multiplet. The gradient of this path for a hadron mass then gives a relation between the light and strange sigma terms. A further relation can be found from the change in the singlet quark mass along the flavour symmetric line. This enables light and strange sigma terms to be estimated for the baryon octet.
QCD lattice simulations determine hadron masses as functions of the quark masses. From the gradients of these masses and using the Feynman-Hellmann theorem the hadron sigma terms can then be determined. We use here a novel approach of keeping the sin
QCD lattice simulations with 2+1 flavours typically start at rather large up-down and strange quark masses and extrapolate first the strange quark mass to its physical value and then the up-down quark mass. An alternative method of tuning the quark m
It has proven a significant challenge to experiment and phenomenology to extract precise values of the nucleon sigma terms. This difficulty opens the window for lattice QCD simulations to lead the field in resolving this aspect of nucleon structure.
We investigate the masses and decay constants of eta and eta mesons using the Wilson twisted mass formulation with N_f=2+1+1 dynamical quark flavours based on gauge configurations of ETMC. We show how to efficiently subtract excited state contributio
We study properties of the thermal transition in QCD, using anisotropic, fixed-scale lattice simulations with $N_f = 2+1$ flavours of Wilson fermion. Observables are compared for two values of the pion mass, focusing on chiral properties. Results are