ترغب بنشر مسار تعليمي؟ اضغط هنا

Information Causality

69   0   0.0 ( 0 )
 نشر من قبل Valerio Scarani
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We review the literature on Information Causality. Since its for a book, we dont think an abstract will be needed at all, so we have written this one just for the sake of the arXiv.

قيم البحث

اقرأ أيضاً

Information Causality is a physical principle which states that the amount of randomly accessible data over a classical communication channel cannot exceed its capacity, even if the sender and the receiver have access to a source of nonlocal correlat ions. This principle can be used to bound the nonlocality of quantum mechanics without resorting to its full formalism, with a notable example of reproducing the Tsirelsons bound of the Clauser-Horne-Shimony-Holt inequality. Despite being promising, the latter result found little generalization to other Bell inequalities because of the limitations imposed by the process of concatenation, in which several nonsignaling resources are put together to produce tighter bounds. In this work, we show that concatenation can be successfully replaced by limits on the communication channel capacity. It allows us to re-derive and, in some cases, significantly improve all the previously known results in a simpler manner and apply the Information Causality principle to previously unapproachable Bell scenarios.
Although quantum mechanics is a very successful theory, its foundations are still a subject of intense debate. One of the main problems is the fact that quantum mechanics is based on abstract mathematical axioms, rather than on physical principles. Q uantum information theory has recently provided new ideas from which one could obtain physical axioms constraining the resulting statistics one can obtain in experiments. Information causality and macroscopic locality are two principles recently proposed to solve this problem. However none of them were proven to define the set of correlations one can observe. In this paper, we present an extension of information causality and study its consequences. It is shown that the two above-mentioned principles are inequivalent: if the correlations allowed by nature were the ones satisfying macroscopic locality, information causality would be violated. This gives more confidence in information causality as a physical principle defining the possible correlation allowed by nature.
Quantum generalizations of Bell inequalities are analytical expressions of correlations observed in the Bell experiment that are used to explain or estimate the set of correlations that quantum theory allows. Unlike standard Bell inequalities, their quantum analogs are rare in the literature, as no known algorithm can be used to find them systematically. In this work, we present a family of quantum Bell inequalities in scenarios where the number of settings or outcomes can be arbitrarily high. We derive these inequalities from the principle of Information Causality, and thus, we do not assume the formalism of quantum mechanics. Considering the symmetries of the derived inequalities, we show that the latter give the necessary and sufficient condition for the correlations to comply with Macroscopic Locality. As a result, we conclude that the principle of Information Causality is strictly stronger than the principle of Macroscopic Locality in the subspace defined by these symmetries.
178 - K. Goswami , J. Romero 2020
Quantum causality extends the conventional notion of fixed causal structure by allowing channels and operations to act in an indefinite causal order. The importance of such an indefinite causal order ranges from the foundational---e.g. towards a theo ry of quantum gravity---to the applied---e.g. for advantages in communication and computation. In this review, we will walk through the basic theory of indefinite causal order and focus on experiments that rely on a physically realisable indefinite causal ordered process---the quantum switch.
241 - H. Buhrman , S. Massar 2004
An EPR-Bell type experiment carried out on an entangled quantum system can produce correlations stronger than allowed by local realistic theories. However there are correlations that are no-signaling and are more non local than the quantum correlatio ns. Here we show that any correlations more non local than those achievable in an EPR-Bell type experiment necessarily allow -in the context of the quantum formalism- both for signaling and for generation of entanglement. We use our approach to rederive Cirelson bound for the CHSH expression, and we derive a new Cirelson type bound for qutrits. We discuss in detail the interpretation of our approach.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا