ترغب بنشر مسار تعليمي؟ اضغط هنا

Cool dwarfs in wide multiple systems: Paper I: Two mid-M dwarfs in a loosely-bound common-proper-motion pair

66   0   0.0 ( 0 )
 نشر من قبل Jos\\'e A. Caballero
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Jose A. Caballero




اسأل ChatGPT حول البحث

This is the first of a series of works devoted to investigate cool dwarfs in wide multiple systems. Here, I present Koenigstuhl 4 A and B, two bright, intermediate M dwarfs with a common high proper-motion and separated by 299 arcsec. At the most probable distance of the system, 19 pc, the projected physical separation is 5700 AU, which makes Koenigstuhl 4 AB to be one of the least bound binary systems with late-type components found to date. I also associate the primary with a ROSAT X-ray source for the first time.

قيم البحث

اقرأ أيضاً

LP 209-28 and LP 209-27 have similar proper motions as tabulated by several catalogues. Using seven astrometric epochs spanning 59 years, we confirm a common tangential velocity by measuring a constant angular separation of rho = 666.62+/-0.09 arcsec . Accurate SDSS and 2MASS photometry indicates that they are normal dwarfs of approximate spectral types K7 V and M3 V. However, from their apparent magnitudes, both LP 209-28 and LP 209-27 are located at 200-250 pc, from where one can deduce an astonishing projected physical separation of 0.6-0.8 pc. The system Koenigstuhl 6 AB represents another world record among the least-bound systems with low-mass star components.
We conducted a spectropolarimetic survey of 58 high proper-motion white dwarfs which achieved uncertainties of >2 kG in the Halpha line and >5 kG in the upper Balmer line series. The survey aimed at detecting low magnetic fields (< 100 kG) and helped identify the new magnetic white dwarfs NLTT 2219, with a longitudinal field B_l = -97 kG, and NLTT 10480 (B_l=-212 kG). Also, we report the possible identification of a very low-field white dwarf with B_l = -4.6 kG. The observations show that ~5% of white dwarfs harbour low fields (~10 to ~10^2 kG) and that increased survey sensitivity may help uncover several new magnetic white dwarfs with fields below ~1 kG. A series of observations of the high field white dwarf NLTT 12758 revealed changes in polarity occurring within an hour possibly associated to an inclined, fast rotating dipole. Also, the relative strength of the pi and sigma components in NLTT 12758 possibly revealed the effect of a field concentration (spot), or, most likely, the presence of a non-magnetic white dwarf companion. Similar observations of NLTT 13015 also showed possible polarity variations, but without a clear indication of the timescale. The survey data also proved useful in constraining the chemical composition, age and kinematics of a sample of cool white dwarfs as well as in constraining the incidence of double degenerates.
We utilize high-resolution (R~60,000), high S/N (~100) spectroscopy of 17 cool Pleiades dwarfs to examine the confounding star-to-star scatter in the 6707 Li I line strengths in this young cluster. Our Pleiads, selected for their small projected rota tional velocity and modest chromospheric emission, evince substantial scatter in the linestrengths of 6707 Li I feature that is absent in the 7699 K I resonance line. The Li I scatter is not correlated with that in the high-excitation 7774 O I feature, and the magnitude of the former is greater than the latter despite the larger temperature sensitivity of the O I feature. These results suggest that systematic errors in linestrength measurements due to blending, color (or color-based T_eff) errors, or line formation effects related to an overlying chromosphere are not the principal source of Li I scatter in our stars. There do exist analytic spot models that can produce the observed Li scatter without introducing scatter in the K I line strengths or the color-magnitude diagram. However, these models predict factor of >3 differences in abundances derived from the subordinate 6104 and resonance 6707 Li I features; we find no difference in the abundances determined from these two features. These analytic spot models also predict CN line strengths significantly larger than we observe in our spectra. The simplest explanation of the Li, K, CN, and photometric data is that there must be a real abundance component to the Pleiades Li dispersion. We suggest that this real abundance component is the manifestation of relic differences in erstwhile pre-main-sequence Li burning caused by effects of surface activity on stellar structure. We discuss observational predictions of these effects.
A common proper motion survey of M dwarf stars within 8 pc of the Sun reveals no new stellar or brown dwarf companions at wide separations (~100-1400 AU). This survey tests whether the brown dwarf ``desert extends to large separations around M dwarf stars and further explores the census of the solar neighborhood. The sample includes 66 stars north of -30 degrees and within 8 pc of the Sun. Existing first epoch images are compared to new J-band images of the same fields an average of 7 years later to reveal proper motion companions within a ~4 arcminute radius of the primary star. No new companions are detected to a J-band limiting magnitude of ~16.5, corresponding to a companion mass of ~40 Jupiter masses for an assumed age of 5 Gyr at the mean distance of the objects in the survey, 5.8 pc.
The unprecedented extent of coverage provided by Kepler observations recently revealed outbursts in two hydrogen-atmosphere pulsating white dwarfs (DAVs) that cause hours-long increases in the overall mean flux of up to 14%. We have identified two ne w outbursting pulsating white dwarfs in K2, bringing the total number of known outbursting white dwarfs to four. EPIC 211629697, with T_eff = 10,780 +/- 140 K and log(g) = 7.94 +/- 0.08, shows outbursts recurring on average every 5.0 d, increasing the overall flux by up to 15%. EPIC 229227292, with T_eff = 11,190 +/- 170 K and log(g) = 8.02 +/- 0.05, has outbursts that recur roughly every 2.4 d with amplitudes up to 9%. We establish that only the coolest pulsating white dwarfs within a small temperature range near the cool, red edge of the DAV instability strip exhibit these outbursts.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا