ﻻ يوجد ملخص باللغة العربية
Binary ruthenium pnictides, RuP and RuAs, with an orthorhombic MnP structure, were found to show a metal to a non-magnetic insulator transition at TMI = 270 K and 200 K, respectively. In the metallic region above TMI, a structural phase transition, accompanied by a weak anomaly in the resistivity and the magnetic susceptibility, indicative of a pseudo-gap formation, was identified at Ts = 330 K and 280 K, respectively. These two transitions were suppressed by substituting Ru with Rh. We found superconductivity with a maximum Tc = 3.7 K and Tc =1.8 K in a narrow composition range around the critical point for the pseudo-gap phase, Rh content xc = 0.45 and xc = 0.25 for Ru1-xRhxP and Ru1-xRhxAs, respectively, which may provide us with a novel non-magnetic route to superconductivity at a quantum critical point.
Density-functional-theory-based electronic structure calculations are made to consider the novel electronic states of Ru-pnictides RuP and RuAs where the intriguing phase transitions and superconductivity under doping of Rh have been reported. We fin
Bulk superconductivity was discovered in BaRh2P2 (Tc = 1.0 K) and BaIr2P2 (Tc = 2.1 K), which are isostructural to (Ba,K)Fe2As2, indicative of the appearance of superconductivity over a wide variety of layered transition metal pnictides. The electron
The effects of electron-electron correlations on the low-energy electronic structure and their relationship with unconventional superconductivity are central aspects in the research on the iron-based pnictide superconductors. Here we use soft X-ray a
At an interface between a topological insulator (TI) and a conventional superconductor (SC), superconductivity has been predicted to change dramatically and exhibit novel correlations. In particular, the induced superconductivity by an $s$-wave SC in
We have successfully synthesized (Ca4Al2O6-y)(Fe2Pn2) (Pn = As and P) (Al-42622(Pn)) using high-pressure synthesis technique. Al-42622(Pn) exhibit superconductivity for both Pn = As and P with the transition temperatures of 28.3 K and 17.1 K, respect